8、數(shù)列{an}是公比為2的等比數(shù)列,且a1+a4+a7=10,那么a3+a6+a9值是( 。
分析:根據(jù)等比數(shù)列的通項公式可得a3+a6+a9=q2(a1+a4+a7)再結合題中條件可得答案.
解答:解:由題意可得:a3+a6+a9=q2(a1+a4+a7)=4×10=40.
故選D.
點評:解決此類問題的關鍵是熟練掌握等比數(shù)列的性質與等比數(shù)列的通項公式,并且要加以正確的計算.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2012•鹽城三模)已知數(shù)列{an}的首項為1,p(x)=a1
C
0
n
(1-x)n+a2
C
1
n
x(1-x)n-1+a3
C
2
n
x2(1-x)n-2+…+an
C
n-1
n
xn-1(1-x)+an+1
C
n
n
xn

(1)若數(shù)列{an}是公比為2的等比數(shù)列,求p(-1)的值;
(2)若數(shù)列{an}是公差為2的等差數(shù)列,求證:p(x)是關于x的一次多項式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設數(shù)列{an}的首項a1=1,前n項和Sn滿足關系式:3tSn-(2t+3)Sn-1=3t(t>0,n=2,3,4,…)
(1)求證:數(shù)列{an}是等比數(shù)列;
(2)設數(shù)列{an}是公比為f(t),作數(shù)列{bn},使b1=1,bn=f(
1
bn-1
)
(n=2,3,4,…),求和:b1b2-b2b3+b3b4-…+b2n-1b2n-b2nb2n+1
(3)若t=-3,設cn=log3a2+log3a3+log3a4+…+log3an+1,Tn=
1
c1
+
1
c2
+…+
1
cn
,求使k
n•2n+1
(n+1)
≥(7-2n)Tn(n∈N+)恒成立的實數(shù)k的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足an=22n-1,則( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2001•上海)設數(shù)列{an}是公比為q>0的等比數(shù)列,Sn是它的前n項和,若
limn→+∞
Sn=7
,則此數(shù)列的首項a1的取值范圍為
(0,7)
(0,7)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•黃岡模擬)數(shù)列{an}是公比為
1
2
的等比數(shù)列,且1-a2是a1與1+a3的等比中項,前n項和為Sn;數(shù)列{bn}是等差數(shù)列,b1=8,其前n項和Tn滿足Tn=nλ•bn+1(λ為常數(shù),且λ≠1).
(Ⅰ)求數(shù)列{an}的通項公式及λ的值;
(Ⅱ)比較
1
T1
+
1
T2
+
1
T3
+…+
1
Tn
1
2
Sn的大。

查看答案和解析>>

同步練習冊答案