等差數(shù)列中,,.
(1)求的通項(xiàng)公式;
(2)設(shè),求數(shù)列的前項(xiàng)和.
(1)(2)

試題分析:
(1)根據(jù)等差數(shù)列的通項(xiàng)公式,可知需要求出首項(xiàng)和公差,利用已知,展開(kāi)聯(lián)立可得首項(xiàng)和公差,從而得到數(shù)列的通項(xiàng)公式.
(2)將(1)中結(jié)果代入,根據(jù)其特點(diǎn),分裂該通項(xiàng)為,然后求和,可以抵消除去首項(xiàng)和末項(xiàng)的所有項(xiàng),從而求得數(shù)列的和.
試題解析:
(1)設(shè)等差數(shù)列的公差為d,則.
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054926431812.png" style="vertical-align:middle;" />,所以.
解得.
所以的通項(xiàng)公式為.
(2) .
所以.項(xiàng)和.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)等差數(shù)列的前n項(xiàng)和為,且滿足條件
(1)求數(shù)列的通項(xiàng)公式;
(2)令,若對(duì)任意正整數(shù),恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知是首項(xiàng)的遞增等差數(shù)列,為其前項(xiàng)和,且
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)數(shù)列滿足,為數(shù)列的前n項(xiàng)和.若對(duì)任意的,不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

若等比數(shù)列的前n項(xiàng)和,(1)求實(shí)數(shù)的值;(2)求數(shù)列的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)為等差數(shù)列的前項(xiàng)和,,,則(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)等差數(shù)列滿足,公差,當(dāng)且僅當(dāng)時(shí),數(shù)列的前項(xiàng)和取得最大值,求該數(shù)列首項(xiàng)的取值范圍
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知函數(shù)f(x)是定義在R上不恒為零的函數(shù),且對(duì)于任意實(shí)數(shù)a,b∈R,滿足:
(ab)= a(b)+b(a), (2)="2," an=(n∈N*), bn=(n∈N*).
考察下列結(jié)論: ①(0)= (1); ②(x)為偶函數(shù); ③數(shù)列{an}為等比數(shù)列; ④數(shù)列{bn}為等差數(shù)列.其中正確的結(jié)論共有(  )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知的等差中項(xiàng)是,且,則的最小值是(    )
A.6B.5C.4D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)函數(shù),數(shù)列是公差不為0的等差數(shù)列,,則     。

查看答案和解析>>

同步練習(xí)冊(cè)答案