9.已知點(diǎn)A(2,-3),B(-1,-3),若過點(diǎn)P(1,1)且斜率為k的直線l與線段AB不相交,則k的取值范圍是(-∞,-4]∪[2,+∞).

分析 由題意畫出圖形,求出直線PA和PB的斜率,數(shù)形結(jié)合得答案.

解答 解:如圖,
kPA=$\frac{-3-1}{2-1}$=-4,kPB=$\frac{-3-1}{-1-1}$=2.
∴直線l的斜率k的取值范圍為(-∞,-4]∪[2,+∞).
故答案為:(-∞,-4]∪[2,+∞).

點(diǎn)評 本題考查了直線的斜率,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知集合A={x|1<x≤5},集合B={$\frac{2x-1}{x-3}$>0}.
(1)求A∩B;
(2)若集合C={x|a+1≤x≤4a-3},且C∪A=A,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=|x2-1|+x2-kx.
(1)若k=2時,求出函數(shù)f(x)的單調(diào)區(qū)間及最小值;
(2)若f(x)≥0恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.與角-$\frac{5π}{8}$終邊相同的角是( 。
A.$\frac{3π}{8}$B.$\frac{7π}{8}$C.$\frac{11π}{8}$D.$\frac{21π}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)f(x)=(2k-1)lnx+$\frac{k}{x}$+2x,有以下命題:
①當(dāng)k=-$\frac{1}{2}$時,函數(shù)f(x)在(0,$\frac{1}{2}}$)上單調(diào)遞增;
②當(dāng)k≥0時,函數(shù)f(x)在(0,+∞)上有極大值;
③當(dāng)-$\frac{1}{2}$<k<0時,函數(shù)f(x)在($\frac{1}{2}$,+∞)上單調(diào)遞減;
④當(dāng)k<-$\frac{1}{2}$時,函數(shù)f(x)在(0,+∞)上有極大值f(${\frac{1}{2}}$),有極小值f(-k).
其中正確命題的序號是(  )
A.①③B.②④C.①④D.②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在等差數(shù)列{an}和等比數(shù)列{bn}中,a1=b1=2,a2=b2=2+b,Sn是{bn}前n項(xiàng)和.
(1)若$\underset{lim}{n→∞}$Sn=3-b,求實(shí)數(shù)b的值;
(2)若b=3,設(shè)cn=(-1)n+1•an•an+1,數(shù)列{cn}的前n項(xiàng)和為Tn,是否存在這樣的實(shí)數(shù)t,使得對于所有的n都有Tn≥tn2成立,若存在,求出t的取值范圍;若不存在,請說明理由.
(3)是否存在正實(shí)數(shù)b,使得數(shù)列{bn}中至少有三項(xiàng)在數(shù)列{an}中,但{bn}中的項(xiàng)不都在數(shù)列{an}中,若存在,求出一個可能的b的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.計(jì)算:$\underset{lim}{x→∞}(\frac{x}{1+x})^{x}$=$\frac{1}{e}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1上的一點(diǎn)P到焦點(diǎn)F1的距離為2,M是線段PF1的中點(diǎn),O為原點(diǎn),則|OM|等于4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.(1)偶函數(shù)f(x)在[0,+∞)上單調(diào)遞減,求滿足f(2x-1)>f(3)的x的取值范圍
(2)已知f(x)是定義在R上的偶函數(shù),當(dāng)x≥0時,f(x)=log2(x+1).解關(guān)于x的不等式f(x)>1.

查看答案和解析>>

同步練習(xí)冊答案