設橢圓的左、右頂點分別為、,離心率.過該橢圓上任一點P作PQ⊥x軸,垂足為Q,點C在QP的延長線上,且.
(1)求橢圓的方程;
(2)求動點C的軌跡E的方程;
(3)設直線MN過橢圓的右焦點與橢圓相交于M、N兩點,且 ,求直線MN的方程.
(1);(2) ;(3)或.
【解析】
試題分析:(1)要求橢圓的方程,就要知道a,b,由點A知道a=,由離心率可求得c,由a2=b2+c2進而求出b=1;(2)求動點的軌跡方程,首先設,,利用用C點表示P點坐標, ,代入橢圓方程,從而得到動點C的軌跡;(3)直線MN被橢圓截得的弦長,直線MN斜率分兩種情況,斜率存在和斜率不存在,斜率不存在是,直線MN方程為x=1, ,舍掉,斜率存在式,設直線MN的方程為,聯(lián)立直線和橢圓方程,利用根與系數(shù)關系和可以求出k.
試題解析:(1)由題意可得,,,
∴,
∴,
∴橢圓的方程為.
(2)設,,由題意得,即,
又,代入得,即,
即動點的軌跡的方程為.
(3) 若直線MN的斜率不存在,則方程為,所以,
∴直線MN的斜率存在,設為k,直線MN的方程為,
由,得,
∵,
∴,
設M ,則
∴,
即,
解得.
故直線MN的方程為或.
考點:1.橢圓;2.動點軌跡;3.求直線方程.
科目:高中數(shù)學 來源: 題型:
x2 |
a2 |
y2 |
b2 |
1 |
4 |
F1M |
F2N |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
x2 | 4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
已知橢圓=1(a>b>0),其右準線l與x軸交于點A,橢圓的上頂點為B,過它的右焦點F且垂直于長軸的直線交橢圓于點P,直線AB恰經(jīng)過線段FP的中點D.
(Ⅰ)求橢圓的離心率;
(Ⅱ)設橢圓的左、右頂點分別是A1、A2,且=-3,求橢圓方程;
(Ⅲ)在(Ⅱ)的條件下,設Q是橢圓右準線l上異于A的任意一點,直線QA1、QA2與橢圓的另一個交點分別為M、N,求證:直線MN與x軸交于定點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(本題滿分12分)
已知橢圓的焦點在軸上,中心在原點,離心率,直線和以原點為圓心,橢圓的短半軸為半徑的圓相切.
(Ⅰ)求橢圓的方程;
(Ⅱ)設橢圓的左、右頂點分別為、,點是橢圓上異于、的任意一點,設直線、的斜率分別為、,證明為定值;
(Ⅲ)設橢圓方程,、為長軸兩個端點, 為橢圓上異于、的點, 、分別為直線、的斜率,利用上面(Ⅱ)的結(jié)論得( )(只需直接寫出結(jié)果即可,不必寫出推理過程).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
.(2012年高考天津卷理科19)(本小題滿分14分)設橢圓的左、右頂點分別為,點P在橢圓上且異于
兩點,為坐標原點.
(Ⅰ)若直線與的斜率之積為,求橢圓的離心率;
(Ⅱ)若,證明:直線的斜率滿足.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com