在平面直角坐標(biāo)系xoy中,曲線(xiàn)C1的參數(shù)方程為(θ為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,得曲線(xiàn)C2的極坐標(biāo)方程為ρ=2cosθ-4sinθ(ρ>0).
(Ⅰ)化曲線(xiàn)C1、C2的方程為普通方程,并說(shuō)明它們分別表示什么曲線(xiàn);
(Ⅱ)設(shè)曲線(xiàn)C1與x軸的一個(gè)交點(diǎn)的坐標(biāo)為P(m,0)(m>0),經(jīng)過(guò)點(diǎn)P作曲線(xiàn)C2的切線(xiàn)l,求切線(xiàn)l的方程.
【答案】分析:(Ⅰ)先根據(jù)同角三角函數(shù)的關(guān)系消去參數(shù)θ可求出曲線(xiàn)C1的普通方程,然后利用極坐標(biāo)公式ρ2=x2+y2,x=ρcosθ,y=ρsinθ進(jìn)行化簡(jiǎn)即可求出曲線(xiàn)C2普通方程,結(jié)合方程說(shuō)明所表示曲線(xiàn);
(Ⅱ)先求出曲線(xiàn)C1與x軸的一個(gè)交點(diǎn)P的坐標(biāo),然后設(shè)出直線(xiàn)方程,利用圓心到直線(xiàn)的距離等于半徑建立等式關(guān)系,求出斜率,的到直線(xiàn)方程.
解答:解:(Ⅰ)曲線(xiàn)C1;曲線(xiàn)C2:(x-1)2+(y+2)2=5;(3分)
曲線(xiàn)C1為中心是坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,長(zhǎng)半軸長(zhǎng)是4,短半軸長(zhǎng)是2的橢圓;
曲線(xiàn)C2為圓心為(1,-2),半徑為的圓(2分)
(Ⅱ)曲線(xiàn)C1與x軸的交點(diǎn)坐標(biāo)為(-4,0)和(4,0),因?yàn)閙>0,
所以點(diǎn)P的坐標(biāo)為(4,0),(2分)
顯然切線(xiàn)l的斜率存在,設(shè)為k,則切線(xiàn)l的方程為y=k(x-4),
由曲線(xiàn)C2為圓心為(1,-2),半徑為的圓得,
解得,所以切線(xiàn)l的方程為(3分)
點(diǎn)評(píng):本題主要考查了參數(shù)方程化成普通方程,以及圓的切線(xiàn)方程,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xoy中,已知圓心在直線(xiàn)y=x+4上,半徑為2
2
的圓C經(jīng)過(guò)坐標(biāo)原點(diǎn)O,橢圓
x2
a2
+
y2
9
=1(a>0)
與圓C的一個(gè)交點(diǎn)到橢圓兩焦點(diǎn)的距離之和為10.
(1)求圓C的方程;
(2)若F為橢圓的右焦點(diǎn),點(diǎn)P在圓C上,且滿(mǎn)足PF=4,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)系xOy中,銳角α和鈍角β的終邊分別與單位圓交于A,B兩點(diǎn).若點(diǎn)A的橫坐標(biāo)是
3
5
,點(diǎn)B的縱坐標(biāo)是
12
13
,則sin(α+β)的值是
16
65
16
65

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,若焦點(diǎn)在x軸的橢圓
x2
m
+
y2
3
=1
的離心率為
1
2
,則m的值為
4
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•泰州三模)選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系xOy中,已知A(0,1),B(0,-1),C(t,0),D(
3t
,0)
,其中t≠0.設(shè)直線(xiàn)AC與BD的交點(diǎn)為P,求動(dòng)點(diǎn)P的軌跡的參數(shù)方程(以t為參數(shù))及普通方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•東莞一模)在平面直角坐標(biāo)系xOy中,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦點(diǎn)為F1(-1,0),且橢圓C的離心率e=
1
2

(1)求橢圓C的方程;
(2)設(shè)橢圓C的上下頂點(diǎn)分別為A1,A2,Q是橢圓C上異于A1,A2的任一點(diǎn),直線(xiàn)QA1,QA2分別交x軸于點(diǎn)S,T,證明:|OS|•|OT|為定值,并求出該定值;
(3)在橢圓C上,是否存在點(diǎn)M(m,n),使得直線(xiàn)l:mx+ny=2與圓O:x2+y2=
16
7
相交于不同的兩點(diǎn)A、B,且△OAB的面積最大?若存在,求出點(diǎn)M的坐標(biāo)及對(duì)應(yīng)的△OAB的面積;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案