函數(shù)f(x)=2x-1的反函數(shù)f-1(x)=
log2(x+1),x∈(-1,+∞)
log2(x+1),x∈(-1,+∞)
分析:把原函數(shù)變形后化指數(shù)式為對數(shù)式,求出x的表達(dá)式后把x和y進(jìn)行互換,同時注意原函數(shù)的值域.
解答:解:由y=2x-1,得:x=log2(y+1),(y>-1).
所以原函數(shù)的反函數(shù)為f-1(x)=log2(x+1),x∈(-1,+∞).
故答案為log2(x+1),x∈(-1,+∞).
點評:本題考查了函數(shù)反函數(shù)的求法,考查了指數(shù)式和對數(shù)式的互化,求解函數(shù)的反函數(shù)時,注意反函數(shù)的定義域應(yīng)是原函數(shù)的值域,此題為基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
2x,x∈(-∞,2)
log2x,x∈(2,+∞)
,則滿足f(x)=4的x的值是(  )
A、2B、16
C、2或16D、-2或16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2x+3
3x
,數(shù)列{an}滿足:a1=1,a n+1=f(
1
an
),
(1)求數(shù)列{an}的通項公式;
(2)令Tn=a1a2-a2a3+a3a4-a4a5+…+a2n-1a2n-a2na2n+1求Tn;
(3)設(shè)bn=
1
an-1an
(n≥2),b1=3,Sn=b1+b2+b3+…+bn,若Sn
k-2004
2
對一切n∈N*成立,求最小的正整數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2x-1
2x+1
,對任意m∈[-3,3],不等式f(mx-1)+f(2x)<0恒成立,則實數(shù)x的取值范圍為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
2x+6, x∈[1,2]
x+7, x∈[-1,1]
,則f(x)的最大值、最小值為
10,6
10,6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2x+x-5,那么方程f(x)=0的解所在區(qū)間是( 。

查看答案和解析>>

同步練習(xí)冊答案