如圖,傾斜角為a的直線經(jīng)過拋物線y2=8x的焦點(diǎn)F,且與拋物線交于A、B兩點(diǎn).

(Ⅰ)求拋物線的焦點(diǎn)F的坐標(biāo)及準(zhǔn)線l的方程;

(Ⅱ)若a為銳角,作線段AB的垂直平分線mx軸于點(diǎn)P,證明|FP|-|FP|cos2a為定值,并求此定值.

答案:
解析:

  (Ⅰ)解:設(shè)拋物線的標(biāo)準(zhǔn)方程為,則,從而

  因此焦點(diǎn)的坐標(biāo)為(2,0).

  又準(zhǔn)線方程的一般式為

  從而所求準(zhǔn)線l的方程為

  (Ⅱ)解法一:如圖(21)圖作AClBDl,垂足為CD,則由拋物線的定義知|FA|=|FC|,|FB|=|BD|.

  記A、B的橫坐標(biāo)分別為xxxz,則

  |FA|=|AC|=解得,

  類似地有,解得

  記直線mAB的交點(diǎn)為E,則

所以

  故

  解法二:設(shè),,直線AB的斜率為,則直線方程為

  將此式代入,得,故

  記直線mAB的交點(diǎn)為,則

  ,

  ,

  故直線m的方程為

  令y=0,得P的橫坐標(biāo)

  

  從而為定值.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,傾斜角為a的直線經(jīng)過拋物線y2=8x的焦點(diǎn)F,且于拋物線交于A、B兩點(diǎn).
(Ⅰ)求拋物線的焦點(diǎn)F的坐標(biāo)及準(zhǔn)線l的方程
(Ⅱ)若a為銳角,作線段AB的垂線平分m交x軸于點(diǎn)P,證明|FP|-|FP|cos2a為定值,并求此定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年廣東省深圳市高級中學(xué)高三(上)期中數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

如圖,傾斜角為a的直線經(jīng)過拋物線y2=8x的焦點(diǎn)F,且于拋物線交于A、B兩點(diǎn).
(Ⅰ)求拋物線的焦點(diǎn)F的坐標(biāo)及準(zhǔn)線l的方程
(Ⅱ)若a為銳角,作線段AB的垂線平分m交x軸于點(diǎn)P,證明|FP|-|FP|cos2a為定值,并求此定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年吉林省長春五中高考數(shù)學(xué)三模試卷(理科)(解析版) 題型:解答題

如圖,傾斜角為a的直線經(jīng)過拋物線y2=8x的焦點(diǎn)F,且于拋物線交于A、B兩點(diǎn).
(Ⅰ)求拋物線的焦點(diǎn)F的坐標(biāo)及準(zhǔn)線l的方程
(Ⅱ)若a為銳角,作線段AB的垂線平分m交x軸于點(diǎn)P,證明|FP|-|FP|cos2a為定值,并求此定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2007年重慶市高考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

如圖,傾斜角為a的直線經(jīng)過拋物線y2=8x的焦點(diǎn)F,且于拋物線交于A、B兩點(diǎn).
(Ⅰ)求拋物線的焦點(diǎn)F的坐標(biāo)及準(zhǔn)線l的方程
(Ⅱ)若a為銳角,作線段AB的垂線平分m交x軸于點(diǎn)P,證明|FP|-|FP|cos2a為定值,并求此定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,傾斜角為a的直線經(jīng)過拋物線的焦點(diǎn)F,且與拋物線交于A、B兩點(diǎn)。

(Ⅰ)求拋物線的焦點(diǎn)F的坐標(biāo)及準(zhǔn)線l的方程;

(Ⅱ)若a為銳角,作線段AB的垂直平分線mx軸于點(diǎn)P,證明|FP|-|FP|cos2a為定值,并求此定值。

查看答案和解析>>

同步練習(xí)冊答案