已知命題p:函數(shù)f(x)=log0.5(2-x)定義域為(-∞,2);命題q:若k<0則函數(shù)g(x)=
k
x
在(0,+∞)上是減函數(shù),對以上兩個命題,下列結論正確的是(  )
A、命題“p且q”為真
B、命題“p或 q”為假
C、命題“P或﹁p”為假
D、命題“﹁p且﹁q”為假
分析:先判斷命題p和命題q的真假,再由復合命題的真假判斷進行求解.
解答:解:由2-x>0,得x<2,
∴命題p:函數(shù)f(x)=log0.5(2-x)定義域為(-∞,2)是真命題;
命題q:若k<0則函數(shù)g(x)=
k
x
在(0,+∞)上是減函數(shù)是假命題,
∴命題“﹁p且﹁q”為假,
故選D.
點評:本題考查復合命題的真假判斷,解題時要認真審題,仔細解答.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知命題p:函數(shù)f(x)=(m-2)x為增函數(shù),命題q:“?x0∈R,x02+2mx0+2-m=0”,若“p∨q”為真命題,“p∧q”為假命題,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題p:函數(shù)f(x)=x2-2x+
12
a
的圖象與x軸有交點,命題q:f(x)=(2a-1)x為R上的減函數(shù),則p是q的(  )條件.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題p:函數(shù)f(x)=
1-x3
,實數(shù)m滿足不等式f(m)<2,命題q:實數(shù)m使方程2x+m=0(x∈R)有實根.若命題p、q中有且只有一個真命題,求實數(shù)m的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題p:函數(shù)f(x)=(a-1)x+a在(-∞,+∞)上是增函數(shù);命題q:
32-a
>2
.若命題“p或q”為真,“p且q”為假,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題p:函數(shù)f(x)=(11+a-2a2x是R上單調遞增的指數(shù)函數(shù).
命題q:關于x的不等式x2-(3a+2)x+a2≥0的解集為R.
若命題“p或q”為真命題,且命題“p且q”為假命題,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案