直線l過點P(1,3),且與x、y軸正半軸圍成的三角形的面積等于6的直線方程是(    )

A.3x+y-6=0                       B.x+3y-10=0

C.3x-y=0                           D.x-3y+8=0

解析:設所求直線l的方程為+=1(a>0,b>0),則有ab=6且+=1.

∴直線l的方程為+=1,即為3x+y-6=0.

答案:A

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知拋物線、橢圓和雙曲線都經(jīng)過點M(1,2),它們在x軸上有共同焦點,橢圓和雙曲線的對稱軸是坐標軸,拋物線的頂點為坐標原點.
(1)求這三條曲線的方程;
(2)已知動直線l過點P(3,0),交拋物線于A,B兩點,是否存在垂直于x軸的直線l′被以AP為直徑的圓截得的弦長為定值?若存在,求出L′的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l過點P(3,2),且與x軸、y軸的正半軸分別交于A、B兩點,
(1)求△ABO的面積的最小值及其這時的直線l的方程;
(2)求直線l在兩坐標軸上截距之和的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設直線l過點P(-3,3),且傾斜角為
5
6
π

(1)寫出直線l的參數(shù)方程;
(2)設此直線與曲線C:
x=2cosθ
y=4sinθ
(θ為參數(shù))交A、B兩點,求|PA|•|PB|

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線C1、橢圓C2和雙曲線C3在x軸上有共同的焦點,且三條曲線都經(jīng)過點M(1,2),C1的頂點為坐標原點,C2、C3的對稱軸是坐標軸.
(1)求這三條曲線的方程
(2)已知動直線l過點P(3,0),交拋物線C1于A、B兩點,問是否存在垂直于x軸的直線l′,被以AP為直徑的圓截得的弦長為定值?若存在,求出l′的方程;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案