設(shè)ab≠0,則不論k取何值,直線bx+ay=
1
k
與直線bx-ay=k的交點(diǎn)一定在(  )
分析:由兩條直線bx+ay=
1
k
與直線bx-ay=k的方程,構(gòu)造方程(組),解方程(組)后,求出交點(diǎn)坐標(biāo),消去參數(shù)a,易得兩條直線bx+ay=
1
k
與直線bx-ay=k的交點(diǎn)的軌跡方程.
解答:解:由
bx+ay=
1
k
bx-ay=k
(ab≠0)得
b2x2-a2y2=1(ab≠0)
其軌跡是雙曲線,
故選C.
點(diǎn)評(píng):求含有參數(shù)的兩條曲線交點(diǎn)的軌跡方程,我們處理的辦法是,構(gòu)造方程組,將兩個(gè)曲線方程中的參數(shù)表達(dá)出來(lái),消參數(shù)即得.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:高三數(shù)學(xué)教學(xué)與測(cè)試 題型:013

設(shè)ab≠0,則不論k取何值,直線bx+ay=與bx-ay=k的交點(diǎn)

[  ]

A.同在一個(gè)圓上

B.同在一個(gè)橢圓上

C.同在一雙曲線上

D.同在一拋物線上

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

設(shè)ab≠0,則不論k取何值,直線數(shù)學(xué)公式與直線bx-ay=k的交點(diǎn)一定在


  1. A.
    一個(gè)圓上
  2. B.
    橢圓上
  3. C.
    雙曲線上
  4. D.
    拋物線上

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)ab≠0,則不論k取何值,直線bx+ay=
1
k
與直線bx-ay=k的交點(diǎn)一定在( 。
A.一個(gè)圓上B.橢圓上C.雙曲線上D.拋物線上

查看答案和解析>>

同步練習(xí)冊(cè)答案