【題目】已知定義在R上的函數(shù)滿足以下三個條件:①對于任意的,都有;②對于任意的都有③函數(shù)的圖象關(guān)于y軸對稱,則下列結(jié)論中正確的是( )
A. B.
C. D.
【答案】B
【解析】
由①可知函數(shù)f(x)是周期T=4的周期函數(shù); 由②可得函數(shù)f(x)在[0,2]上單調(diào)遞增;由③可得函數(shù)f(x)的圖象關(guān)于直線x=2對稱.于是f(4.5)=f(0.5),f(7)=f(3)=f(1),f(6.5)=f(2.5)=f(1.5).即可得出結(jié)果.
定義在R上的函數(shù)y=f(x)滿足以下三個條件:由①對于任意的x∈R,都有f(x+4)=f(x),可知函數(shù)f(x)是周期T=4的周期函數(shù); ②對于任意的x1,x2∈R,且0≤x1<x2≤2,都有f(x1)<f(x2),可得函數(shù)f(x)在[0,2]上單調(diào)遞增;③函數(shù)y=f(x+2)的圖象關(guān)于y軸對稱,可得函數(shù)f(x)的圖象關(guān)于直線x=2對稱.∴f(4.5)=f(0.5),f(7)=f(3)=f(1),f(6.5)=f(2.5)=f(1.5).∵f(0.5)<f(1)<f(1.5),∴f (4.5)<f (7)<f (6.5).
故選:B.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 的離心率為,左、右焦點(diǎn)分別是,以為圓心、3為半徑的圓與以為圓心、1為半徑的圓相交,交點(diǎn)在橢圓C上.
(1)求橢圓C的方程;
(2)直線與橢圓C交于A,B兩點(diǎn),點(diǎn)M是橢圓C的右頂點(diǎn)直線AM與直線BM分別與y軸交于點(diǎn)PQ,試問以線段PQ為直徑的圓是否過x軸上的定點(diǎn)?若是,求出定點(diǎn)坐標(biāo);若不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知四邊形為直角梯形,,,且,為的中點(diǎn),將沿折到位置(如圖2),使得平面,連結(jié),構(gòu)成一個四棱錐.
(1)求證;
(2)求二面角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校食堂對30名高三學(xué)生偏愛蔬菜與偏愛肉類進(jìn)行了一次調(diào)查,將統(tǒng)計(jì)數(shù)據(jù)制成如下表格:
偏愛蔬菜 | 偏愛肉類 | |
男生人 | 4 | 8 |
女生人 | 16 | 2 |
(1)求這30名學(xué)生中偏愛蔬菜的概率;
(2)根據(jù)表格中的數(shù)據(jù),是否有99.5%的把握認(rèn)為偏愛蔬菜與偏愛肉類與性別有關(guān)?
附:,.
0 | 0 | 0 | |
6 | 7 | 10.8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知的三邊長分別為a,b,c,有以下四個命題:
①以,,為邊長的三角形一定存在;
②以,,為邊長的三角形一定存在;
③以,,為邊長的三角形一定存在;
④以,,為邊長的三角形一定存在.
其中正確的命題為( )
A.①③B.②③C.②④D.①④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),函數(shù),其導(dǎo)數(shù)為
(1)當(dāng)時,求的單調(diào)區(qū)間;
(2)函數(shù)是否存在零點(diǎn)?說明理由;
(3)設(shè)在處取得最小值,求的最大值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)在時,函數(shù)值y的取值區(qū)間恰為[],就稱區(qū)間為的一個“倒域區(qū)間”.定義在上的奇函數(shù),當(dāng)時,.
(Ⅰ)求的解析式;
(Ⅱ)求函數(shù)在內(nèi)的“倒域區(qū)間”;
(Ⅲ)若函數(shù)在定義域內(nèi)所有“倒域區(qū)間”上的圖像作為函數(shù)=的圖像,是否存在實(shí)數(shù),使集合恰含有2個元素.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)設(shè)表示p、q中的較大值,表示p、q中的較小值)記的最小值為A,的最大值為B,則A-B=
A. 16 B. -16 C. a2-2a-16 D. a2+2a-1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)a,b∈(0,1)∪(1,+∞),定義運(yùn)算:,則以下四個結(jié)論:①(2τ4)τ8=8τ(4τ2);②8τ(4τ2)>(8τ4)τ2>(2τ8)τ4;③(4τ2)=(2τ4)τ4<(2τ8)τ4;④.其中所有正確結(jié)論的序號為__.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com