【題目】
(注意:在試題卷上作答無(wú)效)
已知5只動(dòng)物中有1只患有某種疾病,需要通過(guò)化驗(yàn)血液來(lái)確定患病的動(dòng)物.血液化驗(yàn)結(jié)果呈陽(yáng)性的即為患病動(dòng)物,呈陰性即沒(méi)患病.下面是兩種化驗(yàn)方案:
方案甲:逐個(gè)化驗(yàn),直到能確定患病動(dòng)物為止;
方案乙:先任取3只,將它們的血液混在一起化驗(yàn).若結(jié)果呈陽(yáng)性則表明患病動(dòng)物為這3只中的1只,然后再逐個(gè)化驗(yàn),直到能確定患病動(dòng)物為止;若結(jié)果呈陰性則在另外2只中任取1只化驗(yàn).
求依方案甲所需化驗(yàn)次數(shù)不少于依方案乙所需化驗(yàn)次數(shù)的概率.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】家具公司制作木質(zhì)的書(shū)桌和椅子,需要木工和漆工兩道工序,已知木工平均四個(gè)小時(shí)做一把椅子,八個(gè)小時(shí)做一張書(shū)桌,該公司每星期木工最多有8000個(gè)工作時(shí);漆工平均兩小時(shí)漆一把椅子、一小時(shí)漆一張書(shū)桌,該公司每星期漆工最多有1300個(gè)工作時(shí),又已知制作一把椅子和一張書(shū)桌的利潤(rùn)分別是15元和20元,試根據(jù)以上條件,問(wèn)怎樣安排生產(chǎn)能獲得最大利潤(rùn)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓,過(guò)點(diǎn)且不過(guò)點(diǎn)的直線與橢圓交于,兩點(diǎn),直線與直線交于點(diǎn).
(Ⅰ)若垂直于軸,求直線的斜率;
(Ⅱ)試判斷直線與直線的位置關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若有平面與,,,,,則下列命題中真命題的序號(hào)有________.(1)過(guò)點(diǎn)且垂直于的直線平行于;(2)過(guò)點(diǎn)且垂直于的平面垂直于;(3)過(guò)點(diǎn)且垂直于的直線在內(nèi);(4)過(guò)點(diǎn)且垂直于的直線在內(nèi).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)有個(gè)元素的總體進(jìn)行抽樣,先將總體分成兩個(gè)子總體和(m是給定的正整數(shù),且),再?gòu)拿總(gè)子總體中各隨機(jī)抽取2個(gè)元素組成樣本,用表示元素i和j同時(shí)出現(xiàn)在樣本中的概率,則_________;所有的和等于________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)已知數(shù)列,其中,且數(shù)列為等比數(shù)列,求常數(shù)p;
(2)設(shè)、是公比不相等的兩個(gè)等比數(shù)列,,證明:數(shù)列不是等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某超市隨機(jī)選取位顧客,記錄了他們購(gòu)買(mǎi)甲、乙、丙、丁四種商品的情況,整理成如下統(tǒng)計(jì)表,其中“√”表示購(gòu)買(mǎi),“×”表示未購(gòu)買(mǎi).
甲 | 乙 | 丙 | 丁 | |
√ | × | √ | √ | |
× | √ | × | √ | |
√ | √ | √ | × | |
√ | × | √ | × | |
85 | √ | × | × | × |
× | √ | × | × |
(Ⅰ)估計(jì)顧客同時(shí)購(gòu)買(mǎi)乙和丙的概率;
(Ⅱ)估計(jì)顧客在甲、乙、丙、丁中同時(shí)購(gòu)買(mǎi)中商品的概率;
(Ⅲ)如果顧客購(gòu)買(mǎi)了甲,則該顧客同時(shí)購(gòu)買(mǎi)乙、丙、丁中那種商品的可能性最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】
已知數(shù)列{an}和{bn}滿足:a1=λ,an+1=其中λ為實(shí)數(shù),n為正整數(shù).
(Ⅰ)對(duì)任意實(shí)數(shù)λ,證明數(shù)列{an}不是等比數(shù)列;
(Ⅱ)試判斷數(shù)列{bn}是否為等比數(shù)列,并證明你的結(jié)論;
(Ⅲ)設(shè)0<a<b,Sn為數(shù)列{bn}的前n項(xiàng)和.是否存在實(shí)數(shù)λ,使得對(duì)任意正整數(shù)n,都有
a<Sn<b?若存在,求λ的取值范圍;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ax2+2ax﹣lnx﹣1,a∈R.
(1)當(dāng)a時(shí),求f(x)的單調(diào)區(qū)間及極值;
(2)若a為整數(shù),且不等式f(x)≥x對(duì)任意x∈(0,+∞)恒成立,求a的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com