若函數(shù)f(x)=2 -(m-x)2的最大值為m,則函數(shù)f(x)的單調(diào)增區(qū)間為
 
考點(diǎn):函數(shù)單調(diào)性的判斷與證明
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:由二次函數(shù)的值域,結(jié)合指數(shù)函數(shù)的單調(diào)性,即可得到m=1,再由二次函數(shù)的單調(diào)性,及指數(shù)函數(shù)的單調(diào)性即可得到增區(qū)間.
解答: 解:由于-(m-x)2≤0,
則f(x)=2 -(m-x)2≤20=1,
即有x=m時(shí),f(x)取得最大值1,
則m=1,
即有f(x)=2-(x-1)2
令t=-(x-1)2,y=2t
則t在(-∞,1)上遞增,y在R上遞增,
則函數(shù)f(x)的增區(qū)間為(-∞,1).
故答案為:(-∞,1).
點(diǎn)評(píng):本題考查函數(shù)的最值和單調(diào)性的判斷,考查復(fù)合函數(shù)的單調(diào)性:同增異減,考查運(yùn)算能力,屬于基礎(chǔ)題和易錯(cuò)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)集合A={x|x2-x-12>0},B={x|-2≤x≤6},則(∁RA)∪B=( 。
A、RB、[-3,6]
C、[-2,4]D、(-3,6]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2x+2x-6,用二分法求方程2x+2x-6=0在x∈(1,3)內(nèi)近似解的過(guò)程中,取區(qū)間中點(diǎn)x0=2,那么下一個(gè)有根區(qū)間為( 。
A、(1,2)
B、(2,3)
C、(2,2.5)
D、(2.5,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)實(shí)數(shù)a>1,b>1,如下四個(gè)結(jié)論:
①若lna+2a=lnb+3b,則a>b;
②若lna+2a=lnb+3b,則a<b;
③若lna-2a=lnb-3b,則a>b;
④若lna-2a=lnb-3b,則a<b.
則下列命題成立的是( 。
A、①④B、②③C、①③D、②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列函數(shù)中,在(0,+∞)上為減函數(shù)的是(  )
A、y=log2(x+1)
B、y=-
1
x+1
C、y=
x
D、y=(
1
2
x-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

不等式|2x+1|-|x-1|>2的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)幾何體的三視圖如圖所示,則該幾何體的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某幾何體的三視圖如圖所示,其正視圖是直角三角形,側(cè)視圖是等腰三角形,俯視圖是半圓.
(1)求該幾何體的體積;
(2)求該幾何體的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a,b,c分別為△ABC三個(gè)內(nèi)角A,B,C的對(duì)邊,sinC(sinB-sinC)=sin2B-sin2A
(1)求A;
(2)若△ABC的面積為
5
3
4
,b+c=6,求a.

查看答案和解析>>

同步練習(xí)冊(cè)答案