下列命題中正確的是(  )
A、平行于同一條直線的兩個(gè)平面互相平行
B、平行于同一個(gè)平面的兩條直線互相平行
C、垂直于同一個(gè)平面的兩個(gè)平面互相平行
D、垂直于同一條直線的兩個(gè)平面互相平行
考點(diǎn):空間中直線與平面之間的位置關(guān)系
專題:空間位置關(guān)系與距離
分析:利用線面平行、面面平行的判定定理對(duì)四個(gè)選項(xiàng)分別分析選擇解答.
解答: 解:對(duì)于選項(xiàng)A,平行于同一條直線的兩個(gè)平面可能相交,故A錯(cuò)誤;
對(duì)于選項(xiàng)B,平行于同一個(gè)平面的兩條直線可能相交、平行或者異面所以B錯(cuò)誤;
對(duì)于選項(xiàng)C,垂直于同一個(gè)平面的兩個(gè)平面是相交或者平行,如墻角;故C錯(cuò)誤;
對(duì)于選項(xiàng)D,垂直于同一條直線的兩個(gè)平面,關(guān)鍵線面垂直的性質(zhì)以及面面平行的判定定理,可以得到兩根平面互相平行;故D正確;
故選D.
點(diǎn)評(píng):本題考查了線面平行、面面平行,線面垂直的性質(zhì)定理和判定定理的綜合運(yùn)用,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知tanθ=2,求2sin2θ-3sinθcosθ-4cos2θ

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線l的參數(shù)方程是
x=
2
2
t
y=
2
2
t+4
2
(其中t為參數(shù)),圓c的極坐標(biāo)方程為ρ=2cos(θ+
π
4
),過(guò)直線上的點(diǎn)向圓引切線,則切線長(zhǎng)的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)點(diǎn)P(-
3
,-1)的直線l與圓x2+y2=1有公共點(diǎn),則直線l傾斜角的取值范圍是( 。
A、(0,
π
6
]
B、[0,
π
3
]
C、[0,
π
6
]
D、(0,
π
3
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線a,b和平面α,且a⊥b,b⊥α,a?α,求證:a∥α.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知映射f:P(m,n)→P′(
m
n
)(m≥0,n≥0)
.設(shè)點(diǎn)A(1,3),B(2,2),點(diǎn)M是線段AB上一動(dòng)點(diǎn),f:M→M′.當(dāng)點(diǎn)M在線段AB上從點(diǎn)A開始運(yùn)動(dòng)到點(diǎn)B結(jié)束時(shí),點(diǎn)M的對(duì)應(yīng)點(diǎn)M′所經(jīng)過(guò)的路線長(zhǎng)度為( 。
A、
π
12
B、
π
6
C、
π
4
D、
π
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列敘述正確的是( 。
A、對(duì)立事件一定是互斥事件
B、互斥事件一定是對(duì)立事件
C、若事件A,B互斥,則P(A)+P(B)=1
D、若事件A,B互為對(duì)立事件,則P(AB)=P(A)•P(B)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)A為圓周上一定點(diǎn),在圓周上等可能地任取一點(diǎn)與A連接,則弦長(zhǎng)超過(guò)半徑的概率為(  )
A、
1
2
B、
1
3
C、
3
4
D、
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若角α的終邊在函數(shù)y=x的圖象上,則角α組成的集合為S=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案