(2007•長寧區(qū)一模)函數(shù)y=
2-x
x
的定義域為
(-∞,0)∪(0,2]
(-∞,0)∪(0,2]
分析:根據(jù)函數(shù)解析式的特征可得
2-x≥0
x≠0
然后求出x的范圍即可得解.
解答:解:∵y=
2-x
x

2-x≥0
x≠0

∴x≤2且x≠0
∴定義域為(-∞,0)∪(0,2]
故答案為(-∞,0)∪(0,2]
點評:本題主要考查了函數(shù)定義域及其求法.解題的關(guān)鍵是要根據(jù)函數(shù)的特征得出關(guān)于x所需滿足的關(guān)系式
2-x≥0
x≠0
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2007•長寧區(qū)一模)函數(shù)f(x)=3sin
π2
x-1
的最小正周期為
4
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2007•長寧區(qū)一模)已知數(shù)列{an}的前n項和Sn=5-4×2-n,則其通項公式為
an=
3(n=1)
4
2n
(n≥2)
an=
3(n=1)
4
2n
(n≥2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2007•長寧區(qū)一模)已知函數(shù)f(x)=
3
|cos
π
2
x|(x≥0)
,圖象的最高點從左到右依次記為P1,P3,P5,…,函數(shù)y=f(x)圖象與x軸的交點從左到右依次記為P2,P4,P6,…,設(shè)Sn=
P1P2
P2P3
+(
P2P3
P3P4
)2
+(
P3P4
P4P5
)3
+(
P4P5
P5P6
)4
+…+(
PnPn+1
pn+1pn+2
)n
,則
lim
n→∞
Sn
1+(-2)n
=
2
3
2
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2007•長寧區(qū)一模)方程4x-2x-6=0的解為
log23
log23

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2007•長寧區(qū)一模)若P(2,-1)為圓(x-1)2+y2=r2(r>0)內(nèi),則r的取值范圍是
2
,+∞)
2
,+∞)

查看答案和解析>>

同步練習冊答案