點A、B分別是以雙曲線的焦點為頂點,頂點為焦點的橢圓C長軸的左、右端點,點F是橢圓的右焦點,點P在橢圓C上,且位于x軸上方,
(1)求橢圓C的的方程;
(2)求點P的坐標(biāo);
(3)設(shè)M是橢圓長軸AB上的一點,點M到直線AP的距離等于|MB|,求橢圓上的點到M的距離d的最小值。
(1) ;(2)點P的坐標(biāo)為;
(3)當(dāng)時,d取最小值 。
【解析】
試題分析:(I)求出雙曲線的焦點、頂點,得出橢圓的a,c,b即可求出橢圓標(biāo)準(zhǔn)方程.
(Ⅱ)點P的坐標(biāo)為(x,y),由已知得,與(x+6)(x-4)+y2=0
解方程組可得點P的坐標(biāo)
(Ⅲ)設(shè)點M是(m,0)于是=|m-6|,解出m=2,建立橢圓上的點到M的距離d的表達(dá)式,用函數(shù)知識求最值。
(1)已知雙曲線實半軸a1=4,虛半軸b1=2,半焦距c1=,
∴橢圓的長半軸a2=c1=6,橢圓的半焦距c2=a1=4,橢圓的短半軸=,
∴所求的橢圓方程為 …………4分
(2)由已知,,設(shè)點P的坐標(biāo)為,則
由已知得
…………6分
則,解之得,
由于y>0,所以只能取,于是,所以點P的坐標(biāo)為……8分
(3)直線,設(shè)點M是,則點M到直線AP的距離是,于是,
又∵點M在橢圓的長軸上,即 …………10分
∴當(dāng)時,橢圓上的點到的距離
又 ∴當(dāng)時,d取最小值 …………12分
考點:本題主要考查了圓錐曲線的幾何性質(zhì)、標(biāo)準(zhǔn)方程、距離求解.考查函數(shù)知識、方程思想、計算能力.
點評:解決該試題的關(guān)鍵是熟練的運用雙曲線的性質(zhì)來表示出橢圓的a,b,c,進(jìn)而得到方程,同時聯(lián)立方程組,結(jié)合韋達(dá)定理求點的坐標(biāo),進(jìn)而分析最值。
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年山東省濟寧市金鄉(xiāng)一中高二(上)12月月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年福建省泉州市泉港五中高二(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年重慶市渝東片區(qū)部分重點中學(xué)高三(下)第一次檢測數(shù)學(xué)試卷(理科)(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com