13.若函數(shù)f(x)=x2+(a+2)x+3是定義域上[a,b]的偶函數(shù),則實(shí)數(shù)b=2.

分析 利用函數(shù)的奇偶性的性質(zhì)列出方程組求解即可.

解答 解:函數(shù)f(x)=x2+(a+2)x+3是定義域上[a,b]的偶函數(shù),
可得:-a=b,a+2=0,解得a=-2,b=2.
故答案為:2.

點(diǎn)評(píng) 本題考查函數(shù)的奇偶性的性質(zhì)的應(yīng)用,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)為奇函數(shù),當(dāng)x≥0時(shí),f(x)=$\sqrt{x}$.g(x)=$\left\{\begin{array}{l}{f(x),x≥0}\\{f(-x),x<0}\end{array}\right.$,
(1)求當(dāng)x<0時(shí),函數(shù)f(x)的解析式;
(2)求g(x)的解析式,并證明g(x)的奇偶性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知向量$\overrightarrow{a}$=(cosx,-$\frac{1}{2}$),$\overrightarrow$=($\sqrt{3}$sinx,cos2x),x∈R,設(shè)函數(shù)f(x)=$\overrightarrow{a}$$•\overrightarrow$.
(Ⅰ) 求f (x)的最小正周期.
(Ⅱ) 求f (x) 在[0,$\frac{π}{2}$]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.函數(shù)y=2x3-6x2+11的單調(diào)減區(qū)間是(0,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)函數(shù)f(x)為定義在R奇函數(shù),當(dāng)x>0時(shí),f(x)=-2x2+4x+1,
(1)求:當(dāng)x<0時(shí),f(x)的表達(dá)式;
(2)用分段函數(shù)寫出f(x)的表達(dá)式;
(3)若函數(shù)h(x)=f(x)-a恰有三個(gè)零點(diǎn),求a的取值范圍(只要求寫出結(jié)果).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知集合$A=\left\{{\left|{\frac{x-2}{2x-1}>}\right.0}\right\}$,B={x|bx<1},若A∪B=R,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.集合A={y|y=x2+1,x∈R},B={y|y=2x+1,x∈R},則A∩B={y|y≥1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=(|x-a2|+|x-2a2|-3a2),若對(duì)于任意x∈R,都有f(x-2)≤f(x),則實(shí)數(shù)a的取值范圍是(  )
A.[-$\frac{1}{6}$,$\frac{1}{6}$]B.[-$\frac{\sqrt{6}}{6}$,$\frac{\sqrt{6}}{6}$]C.[-$\frac{1}{3}$,$\frac{1}{3}$]D.[-$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.lg$\frac{{4\sqrt{2}}}{7}-lg\frac{2}{3}+lg7\sqrt{5}$=lg6+$\frac{1}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案