精英家教網 > 高中數學 > 題目詳情

若x∈R,n∈N*,規(guī)定:數學公式=x(x+1)(x+2)…(x+n-1),例如:數學公式(-3)•(-2)•(-1)=-6,則函數f(x)=x•數學公式


  1. A.
    是奇函數不是偶函數
  2. B.
    是偶函數不是奇函數
  3. C.
    既是奇函數又是偶函數
  4. D.
    既不是奇函數又不是偶函數
B
分析:利用新定義,化簡函數,再利用函數奇偶性的判斷方法,即可求得結論.
解答:由題意,=x(x-3)(x-2)(x-1)(x+1)(x+2)(x+3)=x(x2-9)(x2-4)(x2-1)
∴函數f(x)=x•=x2(x2-9)(x2-4)(x2-1)
∴f(-x)=f(x)
∴函數f(x)是偶函數
故選B.
點評:本題考查新定義,考查函數奇偶性的判定,正確化簡函數是關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

12、若x∈R,n∈N+,定義Mxn=x(x+1)(x+2)…(x+n-1),例如M-55=(-5)(-4)(-3)(-2)(-1)=-120,則函數f(x)=xMx-919的奇偶性為(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

11、若x∈R,n∈N*,定義:Mxn=x(x+1)(x+2)…(x+n-1),則函數f(x)=xMx-919的圖象關于(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

若x∈R,n∈N*,規(guī)定:
H
n
x
=x(x+1)(x+2)…(x+n-1),例如:
H
3
-3
(-3)•(-2)•(-1)=-6,則函數f(x)=x•
H
7
x-3
( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

若x∈R,n∈N*,定義
E
n
x
=x(x+1)(x+2)…(x+n-1)
,如
E
4
-4
=(-4)(-3)(-2)(-1)=24
,則函數f(x)=x•
E
19
x-9
的奇偶性為( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

若x∈R,n∈N*,定義:
M
n
x
=x(x+1)(x+2)…(x+n-1)
,例如
M
6
-6
=(-6)×(-5)×(-4)×(-3)×(-2)×(-1)
,則函數f(x)=x
M
13
x-6
(  )

查看答案和解析>>

同步練習冊答案