如圖,過拋物線y2=4x的焦點F的直線交拋物線與圓(x-1)2+y2=1于A,B,C,D四點,則|AB|•|CD|=   
【答案】分析:當直線過焦點F且垂直于x軸時,|AD|=2p=4,|BC|=2r=2,由拋物線與圓的對稱性知:|AB|=|CD|=1,所以|AB|•|CD|=1.
解答:解:由特殊化原則,
當直線過焦點F且垂直于x軸時,
|AD|=2p=4,
|BC|=2r=2,
由拋物線與圓的對稱性知:
|AB|=|CD|=1,
所以|AB|•|CD|=1;
故答案為1.
點評:本題考查圓的性質(zhì)和應用,解題時恰當?shù)剡x取取特殊值,能夠有效地簡化運算.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,過拋物線y2=2px(p>0)的焦點F的直線l交拋物線于點A、B,交其準線于點C,若|BC|=2|BF|,且|AF|=3,則此拋物線的方程為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

78、如圖,過拋物線y2=4x的焦點F的直線交拋物線與圓(x-1)2+y2=1于A,B,C,D四點,則|AB|•|CD|=
1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,過拋物線y2=2px(p>0)的焦點F的直線l交拋物線于點A、B(|AF|>|BF|),交其準線于點C,若|BC|=2|BF|,且|AF|=2,則此拋物線的方程為
y2=2x
y2=2x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,過拋物線y2=2px(p>0)的焦點F且傾斜角為60°的直線l交拋物線于A、B兩點,若|AF|=3,則此拋物線方程為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,過拋物線y2=4x焦點的直線依次交拋物線與圓(x-1)2+y2=1于A,B,C,D,則
AB
CD
=
1
1

查看答案和解析>>

同步練習冊答案