已知命題p:?x2>x12x22x1,則?p是( 。
A、?x2>x1,2x22x1B、?x2>x1,2x22x1C、?x2>x1,2x22x1D、?x2>x1,2x22x1
分析:根據(jù)全稱命題的否定是特稱命題即可得到結(jié)論.
解答:解:∵命題p:?x2>x12x22x1,為全稱命題,
∴根據(jù)全稱命題的否定是特稱命題可知,
¬p:?x2>x1,2x22x1,
故選:B.
點評:本題主要考查含有量詞的命題的否定,要求熟練掌握含有量詞命題的否定的形式,比較基礎(chǔ).
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

1、已知命題p:x2-2x-15≤0,命題q:x2-2x-m2+1≤0,且?p是?q的必要不充分條件,則實數(shù)m的取值范圍為
m<-4或m>4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

5、已知命題p:x2-x≥6,q:x∈Z,則使得“p且q”與“非q”同時為假命題的所有x組成的集合M=
{-1,0,1,2}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題p:x2-4mx+3m2-2m-1<0(m>0),命題q:(x-1)(2-x)>0,若?p是?q充分不必要條件,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題p:x2-2x+1-m2<0;命題q:x2-x-6<0,若p是q的充分不必要條件,則正實數(shù)m的最大值為
2
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題p:x2-7x+10≤0,命題q:x2-2x+(1-a)(1+a)≤0,(a>0),若“¬p”是“¬q”的必要而不充分條件,求a的取值范圍.

查看答案和解析>>

同步練習冊答案