已知圓A:(x+2)2+y2=1與定直線lx=2,且動圓P和圓A外切并與直線l相切,求動圓圓心P的軌跡方程.

解析:依題意可知,P到圓心A(-2,0)的距離比到定直線x=2的距離大1.

P點軌跡方程為y2=-10(x-).

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知圓C1:(x-2)2+(y-1)2=
20
3
,橢圓C2
x2
a2
+
y2
b2
=1(a>b>0)
,若C2的離心率為
2
2
,如果C1與C2相交于A,B兩點,且線段AB恰為圓C1的直徑,
(I)設(shè)P為圓C1上的一點,求三角形△ABP的最大面積;
(II)求直線AB與橢圓C2的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓A:(x+2)2+y2=
25
4
,圓B:(x-2)2+y2=
1
4
,動圓P與圓A、圓B均外切,直線l的方程為x=a(a≤
1
2
).
(Ⅰ) 求動圓P的圓心的軌跡C的方程;
(Ⅱ)過點B的直線與曲線C交于M、N兩點,(1)求|MN|的最小值;(2)若MN的中點R在l上的射影Q滿足MQ⊥NQ,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一動圓與已知圓O1(x+2)2+y2=1外切,與圓O2(x-2)2+y2=49內(nèi)切,
(1)求動圓圓心的軌跡方程C;
(2)已知點A(2,3),O(0,0)是否存在平行于OA的直線 l與曲線C有公共點,且直線OA與l的距離等于4?若存在,求出直線l的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓C:(x-2)2+y2=36,定點A(2,0),若P是圓上的動點,AP的垂直平分線交CP于R,求R的軌跡方程.

查看答案和解析>>

同步練習冊答案