7、函數(shù)f(x)=x2-bx+c滿足f(1+x)=f(1-x)且f(0)=3,則f(bx)和f(cx)的大小關(guān)系是( 。
分析:由f(1+x)=f(1-x)推出函數(shù)關(guān)于直線x=1對(duì)稱,求出b,f(0)=3推出c的值,x≥0,x<0確定f(bx)和f(cx)的大。
解答:解:∵f(1+x)=f(1-x),
∴f(x)圖象的對(duì)稱軸為直線x=1,由此得b=2.
又f(0)=3,
∴c=3.
∴f(x)在(-∞,1)上遞減,在(1,+∞)上遞增.
若x≥0,則3x≥2x≥1,
∴f(3x)≥f(2x).
若x<0,則3x<2x<1,
∴f(3x)>f(2x).
∴f(3x)≥f(2x).
故選A.
點(diǎn)評(píng):本題是基礎(chǔ)題,考查學(xué)生分析問(wèn)題解決問(wèn)題的能力,基本知識(shí)掌握的熟練程度,利用指數(shù)函數(shù)、二次函數(shù)的性質(zhì)解決問(wèn)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2-ax+4+2lnx
(I)當(dāng)a=5時(shí),求f(x)的單調(diào)遞減函數(shù);
(Ⅱ)設(shè)直線l是曲線y=f(x)的切線,若l的斜率存在最小值-2,求a的值,并求取得最小斜率時(shí)切線l的方程;
(Ⅲ)若f(x)分別在x1、x2(x1≠x2)處取得極值,求證:f(x1)+f(x2)<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=x2+2x在[m,n]上的值域是[-1,3],則m+n所成的集合是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)f(x)=x2-2x-3的圖象為曲線C,點(diǎn)P(0,-3).
(1)求過(guò)點(diǎn)P且與曲線C相切的直線的斜率;
(2)求函數(shù)g(x)=f(x2)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=-x2+2x,x∈(0,3]的值域?yàn)?!--BA-->
[-3,1]
[-3,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=x2+
12
x
+lnx的導(dǎo)函數(shù)為f′(x),則f′(2)=
5
5

查看答案和解析>>

同步練習(xí)冊(cè)答案