對于函數(shù)f(x),若在定義域內(nèi)存在實數(shù)x,滿足f(-x)=-f(x),則稱f(x)為“局部奇函數(shù)”.
(Ⅰ)已知二次函數(shù)f(x)=ax2+2x-4a(a∈R),試判斷f(x)是否為“局部奇函數(shù)”?并說明理由;
(Ⅱ)若f(x)=2x+m是定義在區(qū)間[-1,1]上的“局部奇函數(shù)”,求實數(shù)m的取值范圍;
(Ⅲ)若f(x)=4x-m2x+1+m2-3為定義域R上的“局部奇函數(shù)”,求實數(shù)m的取值范圍.
解:f(x)為“局部奇函數(shù)”等價于關(guān)于x的方程f(-x)=-f(x)有解.
(Ⅰ)當(dāng)f(x)=ax
2+2x-4a(a∈R),時,
方程f(-x)=-f(x)即2a(x
2-4)=0,有解x=±2,
所以f(x)為“局部奇函數(shù)”. …
(Ⅱ)當(dāng)f(x)=2
x+m時,f(-x)=-f(x)可化為2
x+2
-x+2m=0,
因為f(x)的定義域為[-1,1],所以方程2
x+2
-x+2m=0在[-1,1]上有解.…
令
,則
.
設(shè)
,則
,
當(dāng)t∈(0,1)時,g'(t)<0,故g(t)在(0,1)上為減函數(shù),
當(dāng)t∈(1,+∞)時,g'(t)>0,故g(t)在(1,+∞)上為增函數(shù). …
所以t∈[
]時,g(t)
.
所以
,即
. …
(Ⅲ)當(dāng)f(x)=4
x-m2
x+1+m
2-3時,f(-x)=-f(x)可化為4
x+4
-x-2m(2
x+2
-x)+2m
2-6=0.
t=2
x+2
-x≥2,則4
x+4
-x=t
2-2,
從而t
2-2mt+2m
2-8=0在[2,+∞)有解即可保證f(x)為“局部奇函數(shù)”.…
令F(t)=t
2-2mt+2m
2-8,
1° 當(dāng)F(2)≤0,t
2-2mt+2m
2-8=0在[2,+∞)有解,
由當(dāng)F(2)≤0,即2m
2-4m-4≤0,解得1-
; …
2° 當(dāng)當(dāng)F(2)>0時,t
2-2mt+2m
2-8=0在[2,+∞)有解等價于
解得
. …
(說明:也可轉(zhuǎn)化為大根大于等于2求解)
綜上,所求實數(shù)m的取值范圍為
. …
分析:利用局部奇函數(shù)的定義,建立方程關(guān)系,然后判斷方程是否有解即可.
點(diǎn)評:本題主要考查新定義的應(yīng)用,利用新定義,建立方程關(guān)系,然后利用函數(shù)性質(zhì)進(jìn)行求解是解決本題的關(guān)鍵,考查學(xué)生的運(yùn)算能力.