精英家教網 > 高中數學 > 題目詳情
已知全集U={1,2,3,4,5,6},A={2,3,6},則∁UA=( 。
A、{1,4,5}
B、{2,3,6}
C、{1,4,6}
D、{4,5,6}
考點:補集及其運算
專題:集合
分析:由全集U及A,求出A的補集即可.
解答: 解:∵全集U={1,2,3,4,5,6},A={2,3,6},
∴∁UA={1,4,5},
故選:A.
點評:此題考查了補集及其運算,熟練掌握補集的定義是解本題的關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設集合A=B={(x,y)|x∈R,y∈R},從A到B的映射f:(x,y)→(x+y,x-y)在映射f下,A中的元素(4,2)對應的B中元素為( 。
A、(4,2)
B、(1,3)
C、(6,2)
D、(3,1)

查看答案和解析>>

科目:高中數學 來源: 題型:

函數f(x)=(m2-m-1)xm是冪函數,且在 (0,+∞)上為增函數,則實數m=
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知集合A={-2,-1,1,2},B={x|x≥2或x≤-1},則A∩B=( 。
A、{-1,1,2}
B、{-2,-1,2}
C、{-2,1,2}
D、{-2,-1,1}

查看答案和解析>>

科目:高中數學 來源: 題型:

tan960°等于( 。
A、-
3
3
B、-
3
C、
3
3
D、
3

查看答案和解析>>

科目:高中數學 來源: 題型:

函數y=ln(x-1)+
3x+5
2-x
的定義域為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知集合M={x|
x+1
≥0}
,集合N={x|x-1<0},則M∩N=( 。
A、f(x)=ln|x-1|
B、{x|x<1}
C、{x|-1<x<1}
D、{x|-1≤x<1}

查看答案和解析>>

科目:高中數學 來源: 題型:

證明:
2sin(π+θ)•cosθ-1
cos2θ-sin2θ
=
tan(9π+θ)+1
tan(π+θ)-1

查看答案和解析>>

科目:高中數學 來源: 題型:

在直角坐標平面內,我們定義A(x1,y1)、B(x2,y2)兩點間的“直角距離”為D(AB)=|x1-x2|+|y1-y2|.
(1)在平面直角坐標系中,寫出所有滿足到原點的直角距離為2的“格點”的坐標(“格點”指的是橫、縱坐標均為整數的點)
(2)求到兩定點F1、F2的“直角距離”之和為定值2a(a>0)的動點的軌跡方程,并在直角坐標系內作出該動點的軌跡;
(在以下三個條件中任選一個作答,多做不計分,其中選擇條件①,滿分3分;選擇條件②,滿分4分;選擇③滿分6分)
①F1(-1,0)、F2(1,0)、a=2;
②F1(-1,-1)、F2(1,1)、a=2③F1(-1,-1)、F2(1,1)、a=4;
(3)(理科)寫出同時滿足以下兩個條件的所有格點的坐標,并說明理由;
(文科)寫出同時滿足以下兩個條件的所有格點的坐標,不必說明理由;
①到A(-1,-1)、B(1,1)兩點的“直角距離”相等;
②到C(-2,-2)、D(2,2)兩點的“直角距離”之和最小.

查看答案和解析>>

同步練習冊答案