設(shè)命題P:復(fù)數(shù)z=數(shù)學公式對應(yīng)的點在第二象限;
命題q:不等式|a-1|≥sinx對于x∈R恒成立;
如果“p且q”為假命題,“p或q”為真命題,求實數(shù)a的取值范圍.

解:由已知得:若命題P為真,
則復(fù)數(shù)z===-1-a+(2a+1)i對應(yīng)的點在第二象限,
即:,解得:;
由不等式|a-1|≥sinx對于x∈R恒成立,
則|a-1|≥1恒成立,
若命題q為真,則|a-1|≥1,即:a≥2或a≤0.
∵“p且q”為假命題,“p或q”為真命題
∴命題p真q假或命題p假q真
,則:0<a<2;或,則a
∴所求實數(shù)a的取值范圍為(-∞,]∪(0,2).
分析:把復(fù)數(shù)z化簡成a+bi(a,b∈R)的形式,由其對應(yīng)的點在第二象限,即實部小于0且虛部大于0求出a的范圍;不等式
|a-1|≥sinx對于x∈R恒成立,即|a-1|≥1恒成立求出a的范圍,最后根據(jù)“p且q”為假命題,“p或q”為真命題分類取交集求得實數(shù)a的取值范圍.
點評:本題考查了復(fù)數(shù)代數(shù)形式的乘除運算,復(fù)數(shù)的除法,采用分子分母同時乘以分母的共軛復(fù)數(shù),考查了復(fù)合命題的真假判斷,命題p與命題q中只要有一個為假命題,則“p且q”為假命題,只要有一個為真命題,則“p或q”為真命題,此題是中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2013•閔行區(qū)二模)給出下列四個命題:
①如果復(fù)數(shù)z滿足|z+i|+|z-i|=2,則復(fù)數(shù)z在復(fù)平面的對應(yīng)點的軌跡是橢圓.
②若對任意的n∈N*,(an+1-an-1)(an+1-2an)=0恒成立,則數(shù)列{an}是等差數(shù)列或等比數(shù)列.
③設(shè)f(x)是定義在R上的函數(shù),且對任意的x∈R,|f(x)|=|f(-x)|恒成立,則f(x)是R上的奇函數(shù)或偶函數(shù).
④已知曲線C:
x2
9
-
y2
16
=1
和兩定點E(-5,0)、F(5,0),若P(x,y)是C上的動點,則||PE|-|PF||<6.
上述命題中錯誤的個數(shù)是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列四個命題:
①如果復(fù)數(shù)z滿足|z+i|+|z-i|=2,則復(fù)數(shù)z在復(fù)平面上所對應(yīng)點的軌跡是橢圓.
②設(shè)f(x)是定義在R上的函數(shù),且對任意的x∈R,|f(x)|=|f(-x)|恒成立,則f(x)是R上的奇函數(shù)或偶函數(shù).
③已知曲線C:
x2
9
-
y2
16
=1
和兩定點E(-5,0)、F(5,0),若P(x,y)是C上的動點,則||PE|-|PF||<6.
④設(shè)定義在R上的兩個函數(shù)f(x)、g(x)都有最小值,且對任意的x∈R,命題“f(x)>0或g(x)>0”正確,則f(x)的最小值為正數(shù)或g(x)的最小值為正數(shù).
上述命題中錯誤的個數(shù)是(  )

查看答案和解析>>

同步練習冊答案