已知函數(shù)f(x)=x3ax2-3x.

(1)若f(x)在區(qū)間[1,+∞)上是增函數(shù),求實(shí)數(shù)a的取值范圍;

(2)若x=-f(x)的極值點(diǎn),求f(x)在[1,a]上的最大值;

(3)在(2)的條件下,是否存在實(shí)數(shù)b,使得函數(shù)g(x)=bx的圖象與函數(shù)f(x)的圖象恰有3個(gè)交點(diǎn)?若存在,請求出實(shí)數(shù)b的取值范圍;若不存在,試說明理由.

答案:
解析:

  解:(1)=3x2-2ax-3.

  ∵f(x)在[1,+∞)是增函數(shù),

  ∴在[1,+∞)上恒有f′(x)≥0,

  即3x2-2ax-3≥0在[1,+∞)上恒成立,

  則必有≤1且(1)=-2a≥0.∴a≤0;4分

  (2)依題意,(-)=0,即a-3=0.

  ∴a=4,∴f(x)=x3-4x2-3x.

  令=3x2-8x-3=0,得x1=-,x2=3.

  則當(dāng)x變化時(shí),與f(x)變化情況如下表

  ∴f(x)在[1,4]上的最大值是f(1)=-6;8分

  (3)函數(shù)g(x)=bx的圖象與函數(shù)f(x)的圖象恰有3個(gè)交點(diǎn),即方程x3-4x2-3x=bx恰有3個(gè)不等實(shí)根.

  ∴x3-4x2-3x-bx=0,

  ∴x=0是其中一個(gè)根,

  ∴方程x2-4x-3-b=0有兩個(gè)非零不等實(shí)根.

  ∴

  ∴b>-7且b≠-3.

  ∴存在滿足條件的b值,b的取值范圍是b>-7且b≠-3(12分)


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x|mx|(x∈R),且f(4)=0.

(1)求實(shí)數(shù)m的值;

(2)作出函數(shù)f(x)的圖像;

(3)根據(jù)圖像指出f(x)的單調(diào)遞減區(qū)間;

(4)根據(jù)圖像寫出不等式f(x)>0的解集;

(5)求當(dāng)x∈[1,5)時(shí)函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:新課標(biāo)高三數(shù)學(xué)對數(shù)與對數(shù)函數(shù)、反比例函數(shù)與冪函數(shù)專項(xiàng)訓(xùn)練(河北) 題型:解答題

已知函數(shù)f(x)=loga(x+1),g(x)=2loga(2x+t)(t∈R),其中x∈[0,15],a>0,且a≠1.
(1)若1是關(guān)于x的方程f(x)-g(x)=0的一個(gè)解,求t的值;
(2)當(dāng)0<a<1時(shí),不等式f(x)≥g(x)恒成立,求t的取值范圍;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆江西省高二下學(xué)期第二次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)f(x)=|x+1|,g(x)=2|x|+a.

(1)當(dāng)a=0時(shí),解不等式f(x)≥g(x);

(2)若任意x∈R,f(x)g(x)恒成立,求實(shí)數(shù)a的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆新課標(biāo)高三配套第四次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)f(x)=x3+x2-ax-a,x∈R,其中a>0.

(1)求函數(shù)f(x)的單調(diào)區(qū)間;

(2)若函數(shù)f(x)在區(qū)間(-2,0)內(nèi)恰有兩個(gè)零點(diǎn),求a的取值范圍;

(3)當(dāng)a=1時(shí),設(shè)函數(shù)f(x)在區(qū)間[t,t+3]上的最大值為M(t),最小值為m(t),記g(t)=M(t)-m(t),求函數(shù)g(t)在區(qū)間[-3,-1]上的最小值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年湖南省、岳陽縣一中高三11月聯(lián)考理科數(shù)學(xué) 題型:解答題

(本小題滿分13分)(第一問8分,第二問5分)

已知函數(shù)f(x)=2lnxg(x)=ax2+3x.

(1)設(shè)直線x=1與曲線yf(x)和yg(x)分別相交于點(diǎn)P、Q,且曲線yf(x)和yg(x)在點(diǎn)P、Q處的切線平行,若方程f(x2+1)+g(x)=3xk有四個(gè)不同的實(shí)根,求實(shí)數(shù)k的取值范圍;

(2)設(shè)函數(shù)F(x)滿足F(x)+xf′(x)-g′(x)]=-3x2-(a+6)x+1.其中f′(x),g′(x)分別是函數(shù)f(x)與g(x)的導(dǎo)函數(shù);試問是否存在實(shí)數(shù)a,使得當(dāng)x∈(0,1]時(shí),F(x)取得最大值,若存在,求出a的取值范圍;若不存在,說明理由.

 

查看答案和解析>>

同步練習(xí)冊答案