若橢圓
x2
a2
+
y2
b2
=1
的焦點(diǎn)在x軸上,過(guò)點(diǎn)(2,1)作圓x2+y2=4的切線,切點(diǎn)分別為A,B,直線AB恰好經(jīng)過(guò)橢圓的右焦點(diǎn)和上頂點(diǎn),則橢圓方程是
x2
20
+
y2
16
=1
x2
20
+
y2
16
=1
分析:設(shè)出切點(diǎn)坐標(biāo),利用切點(diǎn)與原點(diǎn)的連線與切線垂直,列出方程得到AB的方程,將右焦點(diǎn)坐標(biāo)及上頂點(diǎn)坐標(biāo)代入AB的方程,求出參數(shù)c,b;利用橢圓中三參數(shù)的關(guān)系求出a,求出橢圓方程.
解答:解:設(shè)切點(diǎn)坐標(biāo)為(m,n)則
n-1
m-2
n
m
=-1即m2+n2-n-2m=0
∵m2+n2=4
∴2m+n-4=0
即AB的直線方程為2x+y-4=0
∵線AB恰好經(jīng)過(guò)橢圓的右焦點(diǎn)和上頂點(diǎn)
∴2c-4=0;b-4=0
解得c=2,b=4
所以a2=b2+c2=20
故橢圓方程為
x2
20
+
y2
16
=1

故答案為:
x2
20
+
y2
16
=1
點(diǎn)評(píng):本題考查橢圓方程的求法,圓的切線的性質(zhì)、橢圓中三參數(shù)的關(guān)系:a2=b2+c2,考查計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若橢圓
x2
a2
+y2=1(a>0)的一條準(zhǔn)線經(jīng)過(guò)拋物線y2=-8x的焦點(diǎn),則該橢圓的離心率為( 。
A、
1
2
B、
1
3
C、
3
2
D、
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若橢圓
x2
a2
+y2=1(a>0)
與雙曲線
x2
2
-y2=1
有相同的焦點(diǎn),則a=
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•西城區(qū)一模)雙曲線C:
x2
2
-y2=1
的離心率為
6
2
6
2
;若橢圓
x2
a2
+y2=1(a>0)
與雙曲線C有相同的焦點(diǎn),則a=
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:南京模擬 題型:單選題

若橢圓
x2
a2
+y2=1(a>0)的一條準(zhǔn)線經(jīng)過(guò)拋物線y2=-8x的焦點(diǎn),則該橢圓的離心率為(  )
A.
1
2
B.
1
3
C.
3
2
D.
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:西城區(qū)一模 題型:填空題

雙曲線C:
x2
2
-y2=1
的離心率為_(kāi)_____;若橢圓
x2
a2
+y2=1(a>0)
與雙曲線C有相同的焦點(diǎn),則a=______.

查看答案和解析>>

同步練習(xí)冊(cè)答案