12.已知函數(shù)f(x)=x3-3x.
(Ⅰ)求f′(2)的值;
(Ⅱ)求函數(shù)f(x)的單調(diào)區(qū)間和極值.

分析 (Ⅰ)求出函數(shù)的導(dǎo)數(shù),將x=2代入導(dǎo)函數(shù)求出即可;
(Ⅱ)求導(dǎo)數(shù)f′(x),解不等式f′(x)>0,f′(x)<0,即可得單調(diào)區(qū)間,由極值定義可求得極值.

解答 解:(Ⅰ)f′(x)=3x2-3,
所以f′(2)=9;
(Ⅱ)f′(x)=3x2-3,
令f′(x)>0,解得x>1或x<-1,
令f′(x)<0,解得:-1<x<1.
∴(-∞,-1),(1,+∞)為函數(shù)f(x)的單調(diào)增區(qū)間,(-1,1)為函數(shù)f(x)的單調(diào)減區(qū)間;
∴f(x)極小值=f(1)=-2,f(x)極大值=f(-1)=2.

點(diǎn)評(píng) 本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值問題,準(zhǔn)確求導(dǎo),弄清導(dǎo)數(shù)與函數(shù)性質(zhì)間的關(guān)系是解題關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)△ABC的內(nèi)角A、B、C所對(duì)的邊長分別為a、b、c,其中cosA=$\frac{3}{5}$,a=1.
(1)當(dāng)B=60°時(shí),求b的值.
(2)若△ABC的面積為4,求b+c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若$\frac{a-i}{i}$=b+2i,其中a,b∈R,i是虛數(shù)單位,則a+b的值( 。
A.-3B.-1C.1D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若等差數(shù)列{an}中,a3+a7-a10=8,a11-a4=4,則a6+a7+a8等于(  )
A.34B.35C.36D.37

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知函數(shù)f(x)=xlnx-ax2有兩個(gè)極值點(diǎn),則實(shí)數(shù)a的取值范圍為( 。
A.(-∞,0)B.(0,+∞)C.$(0,\frac{1}{2})$D.(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)y=(x+1)2(x-1),則x=-1是函數(shù)的(  )
A.極大值點(diǎn)B.極小值點(diǎn)C.最大值點(diǎn)D.最小值點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知函數(shù)f(x)=(2x-x2)ex,則函數(shù)f(x)的極大值與極小值之積為-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=ln(x+a)-x2-x在x=0處取得極值.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若關(guān)于x的方程f(x)=-$\frac{5}{2}$x+b在區(qū)間(0,2)有兩個(gè)不等實(shí)根,求實(shí)數(shù)b的取值范圍;
(3)對(duì)于n∈N+,證明:$\frac{2}{{1}^{2}}+\frac{3}{{2}^{2}}+\frac{4}{{3}^{2}}+…+\frac{n+1}{{n}^{2}}>ln(n+1)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=ex-ax2+1的定義域?yàn)镽,其導(dǎo)函數(shù)為f′(x).
(1)若f(x)在(0,+∞)上單調(diào)遞增,求實(shí)數(shù)a的取值范圍;
(2)若a=1,曲線y=f(x)在x=0處的切線為直線l,求直線l與函數(shù)g(x)=f′(x)+2x及直線x=0、x=1圍成的封閉區(qū)域的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案