直線a、b、c及平面α、β,下列命題正確的是(   )
A.若aα,bα,c⊥a, c⊥b 則c⊥αB.若bα, a//b則 a//α
C.若a//α,α∩β=b則a//bD.若a⊥α, b⊥α 則a//b
D

試題分析:A中a,b可能是平行直線,所以得不出c⊥α;B中可能aα,所以得不出a//α;C中a//α,但是a與α內(nèi)的直線的位置關(guān)系不確定,所以得不出a//b;由線面垂直的性質(zhì)定理知D正確.
點評:要正確解決這類題目,就要準確掌握空間中線線、線面之間的平行、垂直的判定定理與性質(zhì)定理并且靈活應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題11分)如圖,三棱錐C—ABD,CB = CD,AB = AD,∠BAD = 90°。E、F分別是BC、AC的中點。

(1)求證:AC⊥BD;
(2)若CA = CB,求證:平面BCD⊥平面ABD
(3)在上找一點M,在AD上找點N,使平面MED//平面BFN,說明理由;并求出的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,在四棱錐中,四邊形為正方形,,且中點.
(Ⅰ)證明://平面;
(Ⅱ)證明:平面平面;
(Ⅲ)求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,四棱錐中,底面,四邊形中, ,, ,,E為中點.
(1)求證:CD⊥面PAC;(2)求:異面直線BE與AC所成角的余弦值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
在如圖的多面體中,⊥平面,,,,,,的中點.

(Ⅰ) 求證:平面;
(Ⅱ) 求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

是三個互不重合的平面,是一條直線,則下列命題中正確的是(   )
A.若的所成角相等,則B.若,則
C.若上有兩個點到的距離相等,則D.若,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知是不同的直線,是不同的平面,給出下列命題真命題是
A.若m⊥α,n⊥β,α⊥β,則m⊥nB.若m//α,n//β,α//β,則m//n
C.若m⊥α,n//β,α⊥β,則m⊥nD.若m//α,n⊥β,α⊥β,則m//n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在正方體中,E是棱的中點,則BE與平面所成角的正弦值為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

、設(shè)是兩個不重合的平面,是兩條不同的直線,給出下列命題:
(1)若,,則  
(2)若,則
(3)若     
(4)若,則,其中正確的有         (只填序號)

查看答案和解析>>

同步練習(xí)冊答案