(2011•江西模擬)如圖,在底面為等腰梯形的四棱錐P-ABCD中,PA⊥底面ABCD,AB∥CD,AB=7CD=7,BC=AD=5,PA=8,E是PD上任意一點,且
PE
ED

(1)求λ為何值時,PB∥平面ACE;
(2)在(1)的條件下,求三棱錐D-ACE的體積.
分析:(1)連接BD交AC于F,PB∥平面ACE,通過三角形相似,列出比例關系,求出λ的值;
(2)在(1)的條件下,三棱錐D-ACE的體積,轉化為VE-ACD,求出底面面積,E到底面的距離,即可求出體積.
解答:解:(1)連接BD交AC于F,連接EF;
因為PB∥平面ACE.由直線與平面平行的性質(zhì)可知
PB∥EF,
∴△PDB∽△EDF,
底面ABCD中,AB∥CD,
∴△AFB∽△CFD;
∵AB=7CD=7,
λ=
PE
ED
=
BF
FD
=
AB
CD
=7

(2)因為PA⊥底面ABCD,AB=7CD=7,BC=AD=5,PA=8,
λ=
PE
ED
=7
,所以E到底面ABCD的距離是1,
過D作DM⊥AB于M,AD=5,AM=3,∴DM=4,
三棱錐D-ACE的體積,就是VE-ACD,
所以VD-ACE=VE-ACD=
1
3
S△ACD•1= 
1
3
×
1
2
CD•DM×1=  
1
3
1
2
•1•4•1=
2
3
點評:本題考查空間幾何體的有關證明和計算,三角形的相似,體積的求法,考查計算能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2011•江西模擬)在△ABC中,內(nèi)角A,B,C的對邊分別是a,b,c,若a2-b2=
3
bc
,sinC=2
3
sinB
,則A=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•江西模擬)已知數(shù)列{an},{bn}分別是等差、等比數(shù)列,且a1=b1=1,a2=b2,a4=b3≠b4
①求數(shù)列{an},{bn}的通項公式;
②設Sn為數(shù)列{an}的前n項和,求{
1
Sn
}的前n項和Tn;
③設Cn=
anbn
Sn+1
(n∈N),Rn=C1+C2+…+Cn,求Rn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•江西模擬)已知數(shù)列{an}滿足an+1=
2an
an+2
(n∈N*),a2011=
1
2011

(1)求{an}的通項公式;
(2)若bn=
4
an
-4023
cn=
b
2
n+1
+
b
2
n
2bn+1bn
(n∈N*)
,求證:c1+c2+…+cn<n+1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•江西模擬)已知函數(shù)f(x)=ax-lnx+1(a∈R),g(x)=xe1-x
(1)求函數(shù)g(x)在區(qū)間(0,e]上的值域;
(2)是否存在實數(shù)a,對任意給定的x0∈(0,e],在區(qū)間[1,e]上都存在兩個不同的xi(i=1,2),使得f(xi)=g(x0)成立.若存在,求出a的取值范圍;若不存在,請說明理由.
(3)給出如下定義:對于函數(shù)y=F(x)圖象上任意不同的兩點A(x1,y1),B(x2,y2),如果對于函數(shù)y=F(x)圖象上的點M(x0,y0)(其中x0=
x1+x22
)
總能使得F(x1)-F(x2)=F'(x0)(x1-x2)成立,則稱函數(shù)具備性質(zhì)“L”,試判斷函數(shù)f(x)是不是具備性質(zhì)“L”,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•江西模擬)設a∈R,f(x)=cosx(asinx-cosx)+cos2(
π
2
-x)
滿足f(-
π
3
)=f(0)
,
(Ⅰ)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)設△ABC三內(nèi)角A,B,C所對邊分別為a,b,c且
a2+c2-b2
a2+b2-c2
=
c
2a-c
,求f(x)在(0,B]上的值域.

查看答案和解析>>

同步練習冊答案