(本小題滿分12分)
已知點(diǎn)在拋物線上(如圖), 過軸交拋物線于另一點(diǎn),設(shè)拋物線與軸相交于兩點(diǎn),試求為何值時(shí),梯形的面積最大,并求出面積的最大值.
, 得, 又由對稱性知.  --- 2分
設(shè)梯形面積為, 則,
,                              --- 4分
, 因, 得,                                     --- 2分
當(dāng)時(shí), , 單調(diào)遞增; 當(dāng)時(shí), , 單調(diào)遞減,
∴ 當(dāng)時(shí),有最大值, 最大值為.                    --- 4分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知曲線,點(diǎn)A(0,-2)及點(diǎn)B(3,a),從點(diǎn)A觀察點(diǎn)B,要使視線不被C擋住,則實(shí)數(shù)a的取值范圍是              
A.(-∞,10)B.(10,+∞)C.(-∞,4)D.(4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

 (本小題共13分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

(普通高中做)拋物線的焦點(diǎn)坐標(biāo)是  
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(13分)如圖,拋物線頂點(diǎn)在原點(diǎn),圓的圓心是拋物線的焦點(diǎn),直線過拋物線的焦點(diǎn),且斜率為2,直線交拋物線與圓依次為、、四點(diǎn).
(1)求拋物線的方程.
(2)求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
直線是線段的垂直平分線.設(shè)橢圓E的方程為

(1)當(dāng)上移動(dòng)時(shí),求直線斜率的取值范圍;
(2)已知直線與拋物線交于A、B兩個(gè)不同點(diǎn), 與橢圓交于P、Q兩個(gè)不同點(diǎn),設(shè)AB中點(diǎn)為,OP中點(diǎn)為,若,求橢圓離心率的范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

拋物線的焦點(diǎn)坐標(biāo)是        

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知拋物線過點(diǎn)(1,1),則該拋物線的標(biāo)準(zhǔn)方程是 ______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

拋物線的準(zhǔn)線軸交于點(diǎn),若以每秒弧度的角速度按逆時(shí)針方向旋轉(zhuǎn),則經(jīng)過         秒,恰好與拋物線第一次相切.

查看答案和解析>>

同步練習(xí)冊答案