兩縣城A和B相距20km,現(xiàn)計(jì)劃在兩縣城外以AB為直徑的半圓弧上選擇一點(diǎn)C建造垃圾處理廠,其對(duì)城市的影響度與所選地點(diǎn)到城市的的距離有關(guān),對(duì)城A和城B的總影響度為城A與城B的影響度之和,記C點(diǎn)到城A的距離為x km,建在C處的垃圾處理廠對(duì)城A和城B的總影響度為y,統(tǒng)計(jì)調(diào)查表明:垃圾處理廠對(duì)城A的影響度與所選地點(diǎn)到城A的距離的平方成反比,比例系數(shù)為4;對(duì)城B的影響度與所選地點(diǎn)到城B的距離的平方成反比,比例系數(shù)為k ,當(dāng)垃圾處理廠建在的中點(diǎn)時(shí),對(duì)城A和城B的總影響度為0.065.
(1)將y表示成x的函數(shù);
(11)討論(1)中函數(shù)的單調(diào)性,并判斷弧上是否存在一點(diǎn),使建在此處的垃圾處理廠對(duì)城A和城B的總影響度最小?若存在,求出該點(diǎn)到城A的距離;若不存在,說明理由。
解法一:(1)如圖,由題意知AC⊥BC,,
其中當(dāng)時(shí),y=0.065,所以k=9
所以y表示成x的函數(shù)為
(2),,
令得,所以,即,當(dāng)時(shí), ,即所以函數(shù)為單調(diào)減函數(shù),當(dāng)時(shí), ,即所以函數(shù)為單調(diào)增函數(shù).所以當(dāng)時(shí), 即當(dāng)C點(diǎn)到城A的距離為時(shí), 函數(shù)有最小值.
解法二: (1)同上.
(2)設(shè),
則,,所以
當(dāng)且僅當(dāng)即時(shí)取”=”.
下面證明函數(shù)在(0,160)上為減函數(shù), 在(160,400)上為增函數(shù).
設(shè)0<m1<m2<160,則
,
因?yàn)?<m1<m2<160,所以4>4×240×240
9 m1m2<9×160×160所以,
所以即函數(shù)在(0,160)上為減函數(shù).
同理,函數(shù)在(160,400)上為增函數(shù),設(shè)160<m1<m2<400,則
因?yàn)?600<m1<m2<400,所以4<4×240×240, 9 m1m2>9×160×160
所以,
所以即函數(shù)在(160,400)上為增函數(shù).
所以當(dāng)m=160即時(shí)取”=”,函數(shù)y有最小值,
所以弧上存在一點(diǎn),當(dāng)時(shí)使建在此處的垃圾處理廠對(duì)城A和城B的總影響度最小.
【命題立意】:本題主要考查了函數(shù)在實(shí)際問題中的應(yīng)用,運(yùn)用待定系數(shù)法求解函數(shù)解析式的 能力和運(yùn)用換元法和基本不等式研究函數(shù)的單調(diào)性等問題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:江蘇省泰州中學(xué)2010-2011學(xué)年高二下學(xué)期期中考試數(shù)學(xué)文科試題 題型:044
兩縣城A和B相距20 km,現(xiàn)計(jì)劃在兩縣城外以AB為直徑的半圓弧上選擇一點(diǎn)C建造垃圾處理廠,其對(duì)城市的影響度與所選地點(diǎn)到城市的的距離有關(guān),對(duì)城A和城B的總影響度為城A與城B的影響度之和,記C點(diǎn)到城A的距離為x km,建在C處的垃圾處理廠對(duì)城A和城B的總影響度為y,統(tǒng)計(jì)調(diào)查表明:垃圾處理廠對(duì)城A的影響度與所選地點(diǎn)到城A的距離的平方成反比,比例系數(shù)為4;對(duì)城B的影響度與所選地點(diǎn)到城B的距離的平方成反比,比例系數(shù)為k,當(dāng)垃圾處理廠建在的中點(diǎn)時(shí),對(duì)城A和城B的總影響度為0.065.
(1)按下列要求建立函數(shù)關(guān)系式:
(i)設(shè)∠CBA=(rad),將y表示成的函數(shù);并寫出函數(shù)的定義域.
(ii)設(shè)AC=x(km),將y表示成x的函數(shù);并寫出函數(shù)的定義域.
(2)請(qǐng)你選用(1)中的一個(gè)函數(shù)關(guān)系確定垃圾處理廠的位置,使建在此處的垃圾處理廠對(duì)城A和城B的總影響度最?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:江蘇省泰州中學(xué)2010-2011學(xué)年高二下學(xué)期期中考試數(shù)學(xué)理科試題 題型:044
兩縣城A和B相距20 km,現(xiàn)計(jì)劃在兩縣城外以AB為直徑的半圓弧上選擇一點(diǎn)C建造垃圾處理廠,其對(duì)城市的影響度與所選地點(diǎn)到城市的的距離有關(guān),對(duì)城A和城B的總影響度為城A與城B的影響度之和,記C點(diǎn)到城A的距離為x km,建在C處的垃圾處理廠對(duì)城A和城B的總影響度為y,統(tǒng)計(jì)調(diào)查表明:垃圾處理廠對(duì)城A的影響度與所選地點(diǎn)到城A的距離的平方成反比,比例系數(shù)為4;對(duì)城B的影響度與所選地點(diǎn)到城B的距離的平方成反比,比例系數(shù)為k,當(dāng)垃圾處理廠建在的中點(diǎn)時(shí),對(duì)城A和城B的總影響度為0.065.
(1)按下列要求建立函數(shù)關(guān)系式:
(i)設(shè)∠CBA=(rad),將y表示成的函數(shù);并寫出函數(shù)的定義域.
(ii)設(shè)AC=x(km),將y表示成x的函數(shù);并寫出函數(shù)的定義域.
(2)請(qǐng)你選用(1)中的一個(gè)函數(shù)關(guān)系確定垃圾處理廠的位置,使建在此處的垃圾處理廠對(duì)城A和城B的總影響度最。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:湖南省模擬題 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com