若a,b∈R+,且a+b=2,則
1
a
+
1
b
的最小值為( 。
分析:變形利用基本不等式即可得出.
解答:解:∵a,b∈R+,且a+b=2,∴
1
a
+
1
b
=
1
2
(a+b)(
1
a
+
1
b
)
=
1
2
(2+
b
a
+
a
b
)
1
2
(2+2
b
a
a
b
)
=2,當(dāng)且僅當(dāng)a=b=1時(shí)取等號(hào).
1
a
+
1
b
的最小值為2.
故選B.
點(diǎn)評(píng):正確變形利用基本不等式是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x+x3,x∈R.
(1)判斷函數(shù)f(x)的單調(diào)性,并證明你的結(jié)論;
(2)若a,b∈R,且a+b>0,試比較f(a)+f(b)與0的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)于使-x2+2x≤M成立的所有常數(shù)M中,我們把M的最小值l做-x2+2x的上確界,若a,b∈R,且a+b=1,則-
1
2a
-
2
b
的上確界為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若a,b∈R+,且a≠b,M=
a
b
+
b
a
N=
a
+
b
,則M與N的大小關(guān)系是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案