若橢圓
x2
25
+
y2
16
=1上一點(diǎn)P到焦點(diǎn)F1的距離為6,則點(diǎn)P到另一個焦點(diǎn)F2的距離是
 
分析:根據(jù)橢圓的定義|PF1|+|PF2|=2a,已知|PF1|=6,進(jìn)而可求|PF2|
解答:解:由橢圓的定義知|PF1|+|PF2|=2a=10,|PF1|=6,故|PF2|=4.
故答案為4
點(diǎn)評:本題主要考查了橢圓的性質(zhì).屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

橢圓
X2
25
+
Y2
9
=1
上不同三點(diǎn)A(x1y1),B(4,
9
5
),C(x2,y2)
與焦點(diǎn)F(4,0)的距離成等差數(shù)列.
(1)求證x1+x2=8;
(2)若線段的垂直平分線與軸的交點(diǎn)為T,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若橢圓或雙曲線上存在點(diǎn)P,使得點(diǎn)P到兩個焦點(diǎn)的距離之比為2:1,則稱此橢圓或雙曲線存在“Ω點(diǎn)”,下列曲線中存在“Ω點(diǎn)”的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以下四個關(guān)于圓錐曲線的命題中:
①設(shè)A、B為兩個定點(diǎn),k為非零常數(shù),|
PA
|-|
PB
|=k
,則動點(diǎn)P的軌跡為雙曲線;
②過定圓C上一定點(diǎn)A作圓的動點(diǎn)弦AB,O為坐標(biāo)原點(diǎn),若
OP
=
1
2
(
OA
+
OB
)
,則動點(diǎn)P的軌跡為橢圓;
③方程2x2-5x+2=0的兩根可分別作為橢圓和雙曲線的離心率;
④雙曲線
x2
35
-y2=1
和橢圓
x2
25
+
y2
9
=1
有相同的焦點(diǎn).
其中真命題的序號為
(寫出所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:
①若橢圓
x2
25
+
y2
16
=1
的左右焦點(diǎn)分別為F1、F2,動點(diǎn)P滿足|PF1|+|PF2|>6,則動點(diǎn)P不一定在該橢圓外部;
②以拋物線y2=2px(p>0)的焦點(diǎn)為圓心,以
p
2
為半徑的圓與該拋物線必有3個不同的公共點(diǎn);
③雙曲線
x2
25
-
y2
9
=1
與橢圓
x2
35
+y2=1
有相同的焦點(diǎn);
④拋物線y2=4x上動點(diǎn)P到其焦點(diǎn)的距離的最小值≥1.
其中真命題的序號為
①③④
①③④
.(寫出所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓
x2
25
+
y2
16
=1
的左、右焦點(diǎn)分別為F1,F(xiàn)2,弦AB過F1,若△ABF2的內(nèi)切圓面積為π,A、B兩點(diǎn)的坐標(biāo)分別為(x1,y1)和(x2,y2),則|y2-y1|的值為( 。
A、
5
3
B、
10
3
C、
20
3
D、
5
3

查看答案和解析>>

同步練習(xí)冊答案