14.已知復(fù)數(shù)z1=3-bi,z2=1-2i(i是虛數(shù)單位),若$\frac{{z}_{1}}{{z}_{2}}$是純虛數(shù),則實數(shù)b的值為( 。
A.3B.-$\frac{3}{2}$C.6D.-6

分析 把z1=3-bi,z2=1-2i代入$\frac{{z}_{1}}{{z}_{2}}$,利用復(fù)數(shù)代數(shù)形式的乘除運算化簡,再由實部為0且虛部不為0求得b值.

解答 解:∵z1=3-bi,z2=1-2i,
∴$\frac{{z}_{1}}{{z}_{2}}$=$\frac{3-bi}{1-2i}=\frac{(3-bi)(1+2i)}{(1-2i)(1+2i)}=\frac{(3+2b)+(6-b)i}{5}$,
又$\frac{{z}_{1}}{{z}_{2}}$是純虛數(shù),則$\left\{\begin{array}{l}{3+2b=0}\\{6-b≠0}\end{array}\right.$,得b=-$\frac{3}{2}$.
故選:B.

點評 本題考查復(fù)數(shù)的基本概念,考查復(fù)數(shù)代數(shù)形式的乘除運算,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.函數(shù)y=x2+$\frac{1}{x}$+1在x=1處的切線方程是y=x+2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.△ABC的三個內(nèi)角A,B,C所對的邊分別為a,b,c,若A=45°,B=75°,c=3$\sqrt{2}$,則a=( 。
A.2B.2$\sqrt{3}$C.2$\sqrt{2}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知 a=${4}^{\frac{2}{3}}$,b=${3}^{\frac{2}{3}}$,${c=25}^{\frac{1}{3}}$,則(  )
A.b<c<aB.a<b<cC.b<a<cD.c<a<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.復(fù)數(shù)1+2i的共軛復(fù)數(shù)對應(yīng)的點位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知f(x)=xlnx
(1)當(dāng)x∈(0,e](e是自然常數(shù))時求f(x)的極小值;
(2)求f(x)在點(e,f(e))(e是自然常數(shù))處的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知集合M={1,2,3,4,5},集合N={x|log4x≥1},則M∩N=( 。
A.{1,2,3}B.{4,5}C.ND.M

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若圓${C_1}:{(x-1)^2}+{(y-2)^2}=4$與圓${C_2}:{(x+1)^2}+{y^2}=8$相交于點A,B,則|AB|=$\sqrt{14}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知全集U=R,集合$A=\{y|y=ln(x+1),x>0\},B=\{x|\frac{1}{2}≤{2^x}≤8\}$.
(1)求(∁UA)∪B;
(2)C={x|a-1≤x≤2a},若A∩C=∅,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案