二次函數(shù)f(x)=ax2+bx+c恒滿足f(x)≤f(2)且在(m,m+1)上是單調(diào)增函數(shù),則m的取值范圍是
m≤1
m≤1
分析:由f(x)≤f(2)可得函數(shù)的對稱軸x=-
b
2a
=2,由f(x)在(m,m+1)上是單調(diào)增函數(shù),可得m+1≤2,可求
解答:解:∵二次函數(shù)f(x)=ax2+bx+c恒滿足f(x)≤f(2)
∴函數(shù)f(x)有最大值f(2)
∴a<0,且對稱軸x=-
b
2a
=2
∵f(x)在(m,m+1)上是單調(diào)增函數(shù),
∴m+1≤2
∴m≤1
故答案為:m≤1
點評:本題主要考查了二次函數(shù)的性質(zhì)的應(yīng)用,由已知f(x)≤f(2)得到二次函數(shù)的對稱軸為x=2是求解的關(guān)鍵
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=a(x+1)2+4-a,其中a為常數(shù)且0<a<3.取x1,x2滿足:x1>x2,x1+x2=1-a,則f(x1)與f(x2)的大小關(guān)系為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=a(x-m)(x-n)(m<n),若不等式f(x)>0的解集是(m,n)且不等式f(x)+2>0的解集是(α,β),則實數(shù)m、n、α、β的大小關(guān)系是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年人教B版高中數(shù)學(xué)必修一2.4函數(shù)的零點練習(xí)卷(一)(解析版) 題型:解答題

已知二次函數(shù)f(x)=a+bx(a,b是常數(shù)且a0)滿足條件:f(2)=0.方程f(x)=x有等根

(1)求f(x)的解析式;

(2)問:是否存在實數(shù)m,n使得f(x)定義域和值域分別為[m,n]和

[2m,2n],如存在,求出m,n的值;如不存在,說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知二次函數(shù)f(x)=a(x+1)2+4-a,其中a為常數(shù)且0<a<3.取x1,x2滿足:x1>x2,x1+x2=1-a,則f(x1)與f(x2)的大小關(guān)系為( 。
A.不確定,與x1,x2的取值有關(guān)
B.f(x1)>f(x2
C.f(x1)<f(x2
D.f(x1)=f(x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2006-2007學(xué)年廣東省陽江市高二(上)期末數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

已知二次函數(shù)f(x)=a(x-m)(x-n)(m<n),若不等式f(x)>0的解集是(m,n)且不等式f(x)+2>0的解集是(α,β),則實數(shù)m、n、α、β的大小關(guān)系是( )
A.m<α<β<n
B.α<m<n<β
C.m<α<n<β
D.α<m<β<n

查看答案和解析>>

同步練習(xí)冊答案