分析 運(yùn)用換元法,求得f(t)=3lnt+$\frac{1}{2}$t+1,求出導(dǎo)數(shù),代入t=1計(jì)算即可得到所求值.
解答 解:$f({e^x})=3x+\frac{1}{2}{e^x}+1$,
可令t=ex,則x=lnt,
f(t)=3lnt+$\frac{1}{2}$t+1,
導(dǎo)數(shù)f′(t)=$\frac{3}{t}$+$\frac{1}{2}$,
則f′(1)=3+$\frac{1}{2}$=$\frac{7}{2}$.
故答案為:$\frac{7}{2}$.
點(diǎn)評(píng) 本題考查導(dǎo)數(shù)的概念和運(yùn)用,考查運(yùn)算能力,正確求得導(dǎo)數(shù)是解題的關(guān)鍵,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ∅∈N | B. | {2}∈N | C. | $\sqrt{2}$∈N | D. | {$\sqrt{2}$}⊆N |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{1}{4}$ | C. | 1 | D. | ${2^{-\frac{3}{2}}}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若α,β垂直于同一平面,則α與β可能相交 | |
B. | 若m,n平行于同一平面,則m與n可能異面 | |
C. | 若m,n不平行,則m與n不可能垂直于同一平面 | |
D. | 若α,β不平行,則在α內(nèi)不存在與β平行的直線 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=x2+4x+4(x≥-2) | B. | y=x2-4x+4(x≥0) | C. | y=x2+2(x≥0) | D. | y=x2-2(x≥0) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 奇函數(shù) | B. | 偶函數(shù) | ||
C. | 既不是奇函數(shù)又不是偶函數(shù) | D. | 既是奇函數(shù)又是偶函數(shù) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com