精英家教網 > 高中數學 > 題目詳情

【題目】某公司擬設計一個扇環(huán)形狀的花壇(如圖所示),該扇環(huán)是由以點為圓心的兩個同心圓弧和延長后通過點,的兩條線段圍成.設圓弧和圓弧所在圓的半徑分別為米,圓心角為θ(弧度).

(1)若,,求花壇的面積;

(2)設計時需要考慮花壇邊緣(實線部分)的裝飾問題,已知直線部分的裝飾費用為60/米,弧線部分的裝飾費用為90/米,預算費用總計1200元,問線段AD的長度為多少時,花壇的面積最大?

【答案】1;(2)當線段的長為5米時,花壇的面積最大.

【解析】

(1)根據扇形的面積公式,求出兩個扇形面積之差就是所求花壇的面積即可;

(2)利用弧長公式根據預算費用總計1200元可得到等式,再求出花壇的面積的表達式,結合得到的等式,通過配方法可以求出面積最大時, 線段AD的長度.

(1)設花壇的面積為S平方米.

答:花壇的面積為;

(2) 圓弧的長為米,圓弧的長為米,線段的長為

由題意知

* ,

,

*式知,,

所以=

時,取得最大值,即時,花壇的面積最大,

答:當線段的長為5米時,花壇的面積最大.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】為建立健全國家學生體質健康監(jiān)測評價機制,激勵學生積極參加身體鍛煉,教育部印發(fā)《國家學生體質健康標準(2014年修訂)》,要求各學校每學期開展覆蓋本校各年級學生的《標準》測試工作,并根據學生每個學期總分評定等級.某校決定針對高中學生,每學期進行一次體質健康測試,以下是小明同學六個學期體質健康測試的總分情況.

學期

1

2

3

4

5

6

總分(分)

512

518

523

528

534

535

(1)請根據上表提供的數據,用相關系數說明的線性相關程度,并用最小二乘法求出關于的線性回歸方程(線性相關系數保留兩位小數);

(2)在第六個學期測試中學校根據 《標準》,劃定540分以上為優(yōu)秀等級,已知小明所在的學習小組10個同學有6個被評定為優(yōu)秀,測試后同學們都知道了自己的總分但不知道別人的總分,小明隨機的給小組內4個同學打電話詢問對方成績,優(yōu)秀的同學有人,求的分布列和期望.

參考公式: ,

相關系數;

參考數據:,.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某服裝廠生產一種服裝,每件服裝成本為40元,出廠單價定為60元,該廠為鼓勵銷售商訂購,規(guī)定當一次訂購量超過100件時,每多訂購一件,訂購的全部服裝的出廠單價就降低元,根據市場調查,銷售商一次訂購不會超過600.

1設一次訂購件,服裝的實際出廠單價為元,寫出函數的表達式;

2當銷售商一次訂購多少件服裝時,該廠獲得的利潤最大?其最大利潤是多少?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓)的離心率,左、右焦點分別為,直線過點且垂直于橢圓的長軸,動直線垂直于點,線段的垂直平分線交于點

(1)求點的軌跡的方程;

(2)當直線與橢圓相切,交于點,,當時,求的直線方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數fx)是定義域為R上的奇函數,當x0時,fx=x2+2x

1)求fx)的解析式;

2)若不等式ft﹣2+f2t+1)>0成立,求實數t的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】假定小麥基本苗數與成熟期有效穗之間存在相關關系,今測得5組數據如下:

(1)以為解釋變量,為預報變量,畫出散點圖

(2)求之間的回歸方程

(3)當基本苗數為時預報有效穗(注:,,

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某校進行課題實驗,乙班為實驗班,甲班為對比班,甲乙兩班均有50人,一年后對兩班進行測試,成績如下表

甲班成績

人數

4

20

15

10

1

乙班成績

人數

1

11

23

13

2

(1)現從甲班成績位于內的試卷中抽取9份進行試卷分析,請問用什么抽樣方法更合理,并寫出最后的抽樣結果

(2)完成下列列聯(lián)表,并判斷有多大把握認為這兩個班在這次測試中成績的差異與實施課題實驗有關。

成績小于100

成績不小于100

合計

甲班

50

乙班

50

合計

36

64

100

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】運貨卡車以每小時x千米的速度勻速行駛130千米,按交通法規(guī)限制50≤x≤100(單位:千米/).假設汽油的價格是每升2元,而汽車每小時耗油升,司機的工資是每小時14.

(1)求這次行車總費用y關于x的表達式;

(2)x為何值時,這次行車的總費用最低,并求出最低費用的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某企業(yè)擬用10萬元投資甲、乙兩種商品.已知各投入萬元,甲、乙兩種商品分別可獲得萬元的利潤,利潤曲線,,如圖所示.

(1)求函數的解析式;

(2)應怎樣分配投資資金,才能使投資獲得的利潤最大?

查看答案和解析>>

同步練習冊答案