已知公差不為0的等差數(shù)列的前n項(xiàng)和為,,且成等比數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),求數(shù)列的前n項(xiàng)和.

(1);(2)

解析試題分析:本題主要考查等差數(shù)列與等比數(shù)列的概念、通項(xiàng)公式、前n項(xiàng)和公式、數(shù)列求和等基礎(chǔ)知識(shí),考查化歸與轉(zhuǎn)化思想,考查思維能力、分析問(wèn)題與解決問(wèn)題的能力和計(jì)算能力.第一問(wèn),利用等差數(shù)列的通項(xiàng)公式,前n項(xiàng)和公式將展開,利用等比中項(xiàng)得出,再利用通項(xiàng)公式將其展開,兩式聯(lián)立解出,從而得出數(shù)列的通項(xiàng)公式;第二問(wèn),將第一問(wèn)的結(jié)論代入,再利用等比數(shù)列的定義證明數(shù)列是等比數(shù)列,利用分組求和法,求出的值.
試題解析:(Ⅰ)設(shè)等差數(shù)列的公差為.
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/e2/d/1mgqt2.png" style="vertical-align:middle;" />,所以.  ①
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/91/d/1qylh4.png" style="vertical-align:middle;" />成等比數(shù)列,所以.   ②      2分
由①,②可得:.                          4分
所以.                                    6分
(Ⅱ)由題意,設(shè)數(shù)列的前項(xiàng)和為,,
,所以數(shù)列為以為首項(xiàng),以為公比的等比數(shù)列  9分
所以               12分
考點(diǎn):1.等差數(shù)列的通項(xiàng)公式;2. 等比數(shù)列的通項(xiàng)公式;3. 等差數(shù)列的前n項(xiàng)和公式;4.等比數(shù)列的前n項(xiàng)和公式;5.等比中項(xiàng);6.分組求和法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知首項(xiàng)為的等比數(shù)列{an}不是遞減數(shù)列,其前n項(xiàng)和為Sn(n∈N*),且S3a3,S5a5,S4a4成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)TnSn(n∈N*),求數(shù)列{Tn}的最大項(xiàng)的值與最小項(xiàng)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列是公差不為零的等差數(shù)列,,且的等比中項(xiàng).
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)數(shù)列的前項(xiàng)和為,試問(wèn)當(dāng)為何值時(shí),最大?并求出的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知為等比數(shù)列,其中a1=1,且a2,a3+a5,a4成等差數(shù)列.
(1)求數(shù)列的通項(xiàng)公式:
(2)設(shè),求數(shù)列{}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列滿足,,,是數(shù)列 的前項(xiàng)和.
(1)若數(shù)列為等差數(shù)列.
(。┣髷(shù)列的通項(xiàng)
(ⅱ)若數(shù)列滿足,數(shù)列滿足,試比較數(shù)列 前項(xiàng)和項(xiàng)和的大;
(2)若對(duì)任意,恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)(為常數(shù),),且數(shù)列是首項(xiàng)為4,公差為2的等差數(shù)列。
(Ⅰ)求證:數(shù)列是等比數(shù)列;
(Ⅱ)若,當(dāng)時(shí),求數(shù)列的前n項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

大學(xué)生自主創(chuàng)業(yè)已成為當(dāng)代潮流。長(zhǎng)江學(xué)院大三學(xué)生夏某今年一月初向銀行貸款20000元作開店資金,全部用作批發(fā)某種商品,銀行貸款的年利率為6%,約定一年后一次還清貸款。已知夏某每月月底獲得的利潤(rùn)是該月月初投人資金的15%,每月月底需要交納個(gè)人所得稅為該月所獲利潤(rùn)的20%,當(dāng)月房租等其他開支1500元,余款作為資金全部投入批發(fā)該商品再經(jīng)營(yíng),如此繼續(xù),假定每月月底該商品能全部賣出。
(1)設(shè)夏某第個(gè)月月底余元,第個(gè)月月底余元,寫出的值并建立的遞推關(guān)系式;
(2)預(yù)計(jì)年底夏某還清銀行貸款后的純收入。(參考數(shù)據(jù):1.1211≈3.48,1.1212≈3.90,0.1211≈7.43×10﹣11,0.1212≈8.92×10﹣12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列中,,,.
(1)證明:數(shù)列是等比數(shù)列,并求數(shù)列的通項(xiàng)公式;
(2)在數(shù)列中,是否存在連續(xù)三項(xiàng)成等差數(shù)列?若存在,求出所有符合條件的項(xiàng);若不存在,請(qǐng)說(shuō)明理由;
(3)若,求證:使得,,成等差數(shù)列的點(diǎn)列在某一直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

三個(gè)數(shù)成等比數(shù)列,其積為512,如果第一個(gè)數(shù)與第三個(gè)數(shù)各減2,則成等差數(shù)列,求這三個(gè)數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案