精英家教網 > 高中數學 > 題目詳情

已知數列{an}的前n項和Sn滿足:數學公式(a為常數,且a≠0,a≠1).
(1)求{an}的通項公式;
(2)設數學公式,若數列{bn}為等比數列,求a的值;
(3)在條件(2)下,設數學公式,數列{cn}的前n項和為Tn.求證:數學公式

解:(1)∵(a為常數,且a≠0,a≠1),
∴當n≥2時,,
化簡得(a≠0),
又∵當n=1時,a1=s1=a,即{an}是等比數列.
∴數列的通項公式an=a•an-1=an
(2)由(1)知,,
因{bn}為等比數列,則有b22=b1b3
,
,
解得,再將代入得bn=3n成立,

(3)證明:由(2)知,

=

,

∴數列的前n和Tn=c1+c2+…+cn
+
=
分析:(1)利用通項公式和前n項和公式關系式,得到an與an-1的關系.
(2)把sn代入bn并化簡,已知數列為等比數列,取一些具體簡單項,再利用等比中項求出a的值.
(3)把前兩小題的結果代入cn并化簡,由式子的特點利用放縮法證明.即兩項相減時前一項放小后一項放大,前后兩項恰好消去,然后再放縮.
點評:本題考查的知識全面,涉及到通項公式和前n項和的關系及等比數列的定義,計算量也很大,最后證明用放縮法,需要認真觀察式子的特點,恰到好處的放縮才能證明出來.做好本題需要強的計算能力和嚴密的邏輯思維能力.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

19、已知數列{an}的前n項和Sn=n2(n∈N*),數列{bn}為等比數列,且滿足b1=a1,2b3=b4
(1)求數列{an},{bn}的通項公式;
(2)求數列{anbn}的前n項和.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知數列{an}的前n項和Sn=an2+bn(a、b∈R),且S25=100,則a12+a14等于( 。
A、16B、8C、4D、不確定

查看答案和解析>>

科目:高中數學 來源: 題型:

已知數列{an}的前n項和Sn=n2+n+1,那么它的通項公式為an=
 

查看答案和解析>>

科目:高中數學 來源: 題型:

13、已知數列{an}的前n項和為Sn=3n+a,若{an}為等比數列,則實數a的值為
-1

查看答案和解析>>

科目:高中數學 來源: 題型:

已知數列{an}的前n項和Sn滿足Sn+1=kSn+2,又a1=2,a2=1.
(1)求k的值及通項公式an
(2)求Sn

查看答案和解析>>

同步練習冊答案