②③④
分析:利用導(dǎo)數(shù)可以判定其單調(diào)性,再判斷出奇偶性,即可判斷出結(jié)論.
解答:∵f′(x)=2x+sinx,
∴當(dāng)x=0時,f′(0)=0;當(dāng)
時,f′(x)<0,函數(shù)f(x)在此區(qū)間上單調(diào)遞減;當(dāng)
時,f′(x)>0,函數(shù)f(x)在此區(qū)間上單調(diào)遞增.
∴函數(shù)f(x)在x=0時取得最小值,f(0)=0-1=-1.
∵?x∈[-
,
],都有f(-x)=f(x),∴f(x)是偶函數(shù).
根據(jù)以上結(jié)論可得:
①當(dāng)x
1>x
2時,則f(x
1)>f(x
2)不成立;
②當(dāng)x
12>x
22時,得|x
1|>|x
2|,則f(|x
1|)>f(|x
2|)?f(x
1)>f(x
2)恒成立;
③當(dāng)|x
1|>x
2時,則f(x
1)=f(|x
1|)>f(x
2)恒成立;
④x
1>|x
2|時,則f(x
1)>f(|x
2|)=f(x
2)恒成立.
綜上可知:能使f(x
1)>f(x
2)恒成立的有②③④.
故答案為②③④.
點評:熟練掌握利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、判定函數(shù)的奇偶性等是解題的關(guān)鍵.