已知{an}是遞增的等比數(shù)列a2=2,a4-
5
2
a3=-2,則此數(shù)列的公比q為(  )
A、3
B、4
C、
1
2
D、2
考點(diǎn):等比數(shù)列的通項(xiàng)公式
專題:等差數(shù)列與等比數(shù)列
分析:由題意易得q的一元二次方程,解方程驗(yàn)證可得.
解答: 解:∵a2=2,a4-
5
2
a3=-2
∴由通項(xiàng)公式可得2q2-
5
2
•2q=-2
整理可得2q2-5q+2=0,即(q-2)(2q-1)=0,
解得q=2,或q=
1
2
,
又∵{an}是遞增的等比數(shù)列,∴q=2
故選:D
點(diǎn)評:本題考查等比數(shù)列的通項(xiàng)公式,涉及一元二次方程的求解,屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

命題p:“?x∈(0,有9x+
a2
x
≥7a+1,其中常數(shù)a<0”,若命題q:“?x0∈R,x02+2ax0+2-a=0,若“p且q”為假命題,“p或q”為真命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:?x0∈R,x02+ax0+a<0.若?p是真命題,則實(shí)數(shù)a的取值范圍是(  )
A、[0,4]
B、(0,4)
C、(-∞,0)∪(4,+∞)
D、(-∞,0]∪[4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

類比平面內(nèi)正三角形的“三邊相等,三內(nèi)角相等”的性質(zhì),可推知正四體的下列的一些性質(zhì),
①各棱長相等,同一頂點(diǎn)上的兩條棱的夾角相等;
②各個面都是全等的正三角形,相鄰兩個面所成的二面角相等;
③各個面都是全等的正三角形,同一頂點(diǎn)上的任何兩條棱的夾角相等.
你認(rèn)為比較恰當(dāng)?shù)氖?div id="vs2g5mv" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是用模擬方法估計(jì)圓周率π值的程序框圖,P表示估計(jì)結(jié)果,則圖中空白框內(nèi)應(yīng)填入(  ) 
A、P=
N
1000
B、P=
4N
1000
C、P=
M
1000
D、P=
4M
1000

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={y|y=
x-1
,x∈R},集合B={y|1≤y<4},則A∩(∁RB)( 。
A、(0,1)∪[4,+∞)
B、[4,+∞)
C、(4,+∞)
D、∅

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

閱讀圖中的程序框圖,其輸出結(jié)果為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z=m2(1+i)-m(3+6i)為純虛數(shù),則實(shí)數(shù)m=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法中,不正確的是(  )
A、“|x|=|y|”是“x=y”的必要不充分條件
B、命題p:?x∈R,sinx≤1,則¬p:?x∈R,sinx>1
C、“λ≤2”是“數(shù)列an=n2-λn+1(n∈N*)為遞增數(shù)列”的充要條件
D、命題p:所有有理數(shù)都是實(shí)數(shù),q:正數(shù)的對數(shù)都是負(fù)數(shù),則(¬p)∨(¬q)為真命題

查看答案和解析>>

同步練習(xí)冊答案