設(shè)函數(shù)f(x)=cos(x+
2
3
π)+2cos2
x
2
,x∈R.
(1)求f(x)的值域;
(2)記△ABC內(nèi)角A、B、C的對邊長分別為a,b,c,若f(B)=1,b=1,c=
3
,求a的值.
(I)f(x)=cos(x+
2
3
π)+2cos2
x
2

=cosxcos
2
3
π-sinxsin
2
3
π+cosx+1
=-
1
2
cosx-
3
2
sinx+cosx+1
=
1
2
cosx-
3
2
sinx+1
=sin(x+
6
)+1
因此函數(shù)f(x)的值域為[0,2]
(II)由f(B)=1 得sin(B+
6
)+1=1,即sin(B+
6
)=0,即B+
6
=0或π,B=
π
6
或-
6

又B是三角形的內(nèi)角,所以B=
π
6

由余弦定理得b2=a2+c2-2accosB
即1=a2+3-3a,整理a2-3a+2=0
解得a=1或a=2
答:(I)函數(shù)f(x)的值域為[0,2]
(II)a=1或a=2
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=在區(qū)間上單調(diào)遞減,則實數(shù)a的取值范圍是(    )

  A.                         B.                 C.                      D..Co

查看答案和解析>>

同步練習冊答案