在數(shù)列{an}中,a1=-
1
4
,an=1-
1
an-1
(n>1),則a2011的值為(  )
分析:由數(shù)列的遞推公式可 先求數(shù)列的前幾項(xiàng),從而發(fā)現(xiàn)數(shù)列的周期性的特點(diǎn),進(jìn)而可求
解答:解:∵a1=-
1
4
,an=1-
1
an-1

∴a2=1-
1
a1
=5
a3=1-
1
a2
=
4
5

a4=1-
1
a3
=-
1
4
=a1
∴數(shù)列{an}是以3為周期的數(shù)列
∴a2011=a1=-
1
4

故選D
點(diǎn)評(píng):本題主要考查了利用數(shù)列的遞推 公式求解數(shù)列的項(xiàng),解題的關(guān)鍵是由遞推關(guān)系發(fā)現(xiàn)數(shù)列的周期性的特點(diǎn)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在數(shù)列{an}中,
a
 
1
=1
,an=
1
2
an-1+1
(n≥2),則數(shù)列{an}的通項(xiàng)公式為an=
2-21-n
2-21-n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在數(shù)列{an}中,a 1=
1
3
,并且對(duì)任意n∈N*,n≥2都有an•an-1=an-1-an成立,令bn=
1
an
(n∈N*).
(Ⅰ)求數(shù)列{bn}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{
an
n
}的前n項(xiàng)和為Tn,證明:
1
3
Tn
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在數(shù)列{an}中,a=
12
,前n項(xiàng)和Sn=n2an,求an+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在數(shù)列{an}中,a1=a,前n項(xiàng)和Sn構(gòu)成公比為q的等比數(shù)列,________________.

(先在橫線上填上一個(gè)結(jié)論,然后再解答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年廣東省汕尾市陸豐市碣石中學(xué)高三(上)第四次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

在數(shù)列{an}中,a,并且對(duì)任意n∈N*,n≥2都有an•an-1=an-1-an成立,令bn=(n∈N*).
(Ⅰ)求數(shù)列{bn}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{}的前n項(xiàng)和為Tn,證明:

查看答案和解析>>

同步練習(xí)冊(cè)答案