已知a=∫0
π2
(sinx+cosx)dx
,若(3-ax)6=a0+a1x+a2x2+…+a6x6,則|a1|+|a2|+|a3|+|a4|+|a5|+|a6|=
 
分析:利用微積分基本定理求出a的值,通過對(duì)二項(xiàng)式中的x賦值求出常數(shù)項(xiàng),利用二項(xiàng)展開式的通項(xiàng)公式判斷出各項(xiàng)系數(shù)的符號(hào),將待求的式子中的絕對(duì)值去掉,令二項(xiàng)式中的x取-1,求出值.
解答:解:∵a=∫0
π
2
(sinx+cosx)dx
=2
∴(3-2x)6=a0+a1x+a2x2+…+a6x6
令x=0得a0=36
∵(3-2x)6展開式的奇次項(xiàng)的系數(shù)為負(fù),偶次項(xiàng)的系數(shù)為正
∴|a1|+|a2|+|a3|+|a4|+|a5|+|a6|=a2+a4+a6-(a1+a3+a5
令①中x=-1得a0-a1+a2-a3+…+a6=56
∴a2+a4+a6-(a1+a3+a5)=56-36
故答案為56-36
點(diǎn)評(píng):求二項(xiàng)展開式的系數(shù)和問題常用的方法是通過觀察給二項(xiàng)式中x的賦值即賦值求系數(shù)和.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知A(-2,0),B(2,0),動(dòng)點(diǎn)P滿足∠APB=θ,且|PA|•|PB|cos2
θ2
=4

(1)求動(dòng)點(diǎn)P的軌跡C;
(2)設(shè)過M(0,1)的直線l(斜率存在)交P點(diǎn)軌跡C于P、Q兩點(diǎn),B1、B2是軌跡C與y軸的兩個(gè)交點(diǎn),直線B1P與B2Q交于點(diǎn)S,試問:當(dāng)l轉(zhuǎn)動(dòng)時(shí),點(diǎn)S是否在一條定直線上?若是,請(qǐng)寫出這直線的方程,并證明你的結(jié)論;若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A、B分別是x軸和y軸上的兩個(gè)動(dòng)點(diǎn),滿足|AB|=2,點(diǎn)P在線段AB上,且
AP
=t
PB
(t是不為0的常數(shù)),設(shè)點(diǎn)P的軌跡方程為C.
(Ⅰ)求點(diǎn)P的軌跡方程C;
(Ⅱ)若曲線C為焦點(diǎn)在x軸上的橢圓,試求實(shí)數(shù)t的取值范圍;
(Ⅲ)若t=2,點(diǎn)M、N是C上關(guān)于原點(diǎn)對(duì)稱的兩個(gè)動(dòng)點(diǎn),點(diǎn)Q的坐標(biāo)為(
3
2
,3)
,求△QMN的面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b∈R,且滿足
2a-b-2≤0
a-2b+2≥0
a+b-1≥0
,則S=
2a+b
a+b
的取值范圍為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A(-3,0),B(3,0).若△ABC周長(zhǎng)為16.
(1)求點(diǎn)C軌跡L的方程;
(2)過O作直線OM、ON,分別交軌跡L于M、N點(diǎn),且OM⊥ON,求S△MON的最小值;
(3)在(2)的前提下過O作OP⊥MN交于P點(diǎn).求證點(diǎn)P在定圓上,并求該圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年江西省南昌市新建二中高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:解答題

已知A(-2,0),B(2,0),動(dòng)點(diǎn)P滿足∠APB=θ,且
(1)求動(dòng)點(diǎn)P的軌跡C;
(2)設(shè)過M(0,1)的直線l(斜率存在)交P點(diǎn)軌跡C于P、Q兩點(diǎn),B1、B2是軌跡C與y軸的兩個(gè)交點(diǎn),直線B1P與B2Q交于點(diǎn)S,試問:當(dāng)l轉(zhuǎn)動(dòng)時(shí),點(diǎn)S是否在一條定直線上?若是,請(qǐng)寫出這直線的方程,并證明你的結(jié)論;若不是,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案