如圖,在三棱錐P—ABC中,PA⊥底面ABC,∠BAC=60°,AB=AC=2,以PA為直徑的球O和PB、PC分別交于B1、C1
(1)求證B1C1∥平面ABC
(2)若二面角C—PB—A的大小為arctan2,試求球O的表面積。
(1)連接AC1、AB1
∵PA⊥底面ABC
∴PA⊥AB、PA⊥AC
又∵AB=AC,易得△APC≌△APB
∴BP=CP
∠APB1=∠APC1
∵AP為球O的直徑,∴AC1⊥PC1
AB1⊥PB1 ∴cos∠APB1==cos∠APC1=
∴PB1=PC1……………………(3分)
∴ ∴B1C1∥BC
又∵B1C1平面ABC,BC平面ABC
∴B1C1∥平面ABC …………………………(6分)
(2)過(guò)點(diǎn)C作CD⊥AB于點(diǎn)D,則CD⊥平面ABP,過(guò)D作DE⊥PB于E,連CE,由三垂線定理知CE⊥PB
∴∠CED是二面角C—PB—A的平面角,即∠CED=arctan
∴tan∠CED=
∴DE=
sin∠PBA=
∴∠PBA=30°…………(9分)
∴AP=ABtan∠PBA=
∴球O的半徑R=1………………(11分)
∴球O的表面積為…………(12分)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
1 |
2 |
1 |
x |
a |
y |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com