17.在等差數(shù)列{an}中,a8=8,則S15的值為120.

分析 利用等差數(shù)列的求和公式及其性質即可得出.

解答 解:由等差數(shù)列的性質可得:S15=$\frac{15({a}_{1}+{a}_{15})}{2}$=15a8=15×8=120.
故答案為:120.

點評 本題考查了等差數(shù)列的通項公式與求和公式及其性質,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

7.設雙曲線的焦點在x軸上,兩條漸近線方程為y=±$\frac{1}{2}$x,則該雙曲線的離心率為( 。
A.$\frac{\sqrt{3}}{2}$B.1C.$\frac{\sqrt{5}}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.設數(shù)列{an} 的前n項和為Sn,已知4Sn=2an-n2+7n(n∈N*),則a11=-2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.(1)計算:${(\frac{4}{9})^{-\frac{3}{2}}}+{[{(-2)^6}]^{\frac{1}{2}}}$-lg0.4-2lg0.5-14×${log_2}\sqrt{2}$
(2)已知P(sinα,cosα)在直線y=$\frac{1}{2}$x,求$\frac{cos(π-α)+sin(π+α)}{{cos(\frac{1}{2}π-α)+sin(\frac{1}{2}π+α)}}$+2sinαcosα的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知集合A={x|2<x<4},B={x|x2-4x+3<0},則A∩B=( 。
A.(1,3)B.(1,4)C.(2,3)D.(2,4)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知函數(shù)f(x)=$\left\{\begin{array}{l}{|{2}^{x}-1|,x<2}\\{\frac{3}{x-1},x>2}\end{array}\right.$,若方程f(x)-a=0有三個不同的實數(shù)根,則實數(shù)a的取值范圍為( 。
A.(1,3)B.(0,3)C.(0,2)D.(0,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知等差數(shù)列{an}的前n項和為Sn,公差為d,若$\frac{{{S_{2017}}}}{2017}-\frac{{{S_{17}}}}{17}=100$,則d的值為$\frac{1}{10}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.設數(shù)列{an}的前n項和為Sn,已知a1=1,Sn+1=4an+2(n∈N*).
(1)設bn=an+1-2an,證明數(shù)列{bn}是等比數(shù)列(要指出首項、公比);
(2)若cn=nbn,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.某幾何體的三視圖如圖所示,則該幾何體最長棱的長度為(  )
A.4B.$3\sqrt{2}$C.2$\sqrt{2}$D.$2\sqrt{3}$

查看答案和解析>>

同步練習冊答案