設(shè)橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,離心率.已知點(diǎn)到這個(gè)橢圓上的點(diǎn)的最遠(yuǎn)距離為,求這個(gè)橢圓方程.
設(shè)橢圓方程為, 為橢圓上的點(diǎn),由 

,則當(dāng)時(shí)最大,即, ,故矛盾.
時(shí),時(shí),
所求方程為  
同答案
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓,過點(diǎn)引1條弦,使它在這點(diǎn)平分,求此弦所在直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓上一點(diǎn)A到左焦點(diǎn)的距離為,則點(diǎn)A到直線的距離為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在Rt△ABC中,∠CAB=90°,AB=2,AC=。一曲線E過點(diǎn)C,動(dòng)點(diǎn)P在曲線E上運(yùn)動(dòng),且保持|PA|+|PB|的值不變,直線l經(jīng)過A與曲線E交于M、N兩點(diǎn)。
(1)建立適當(dāng)?shù)淖鴺?biāo)系,求曲線E的方程;
(2)設(shè)直線l的斜率為k,若∠MBN為鈍角,求k的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知是橢圓的半焦距,則的取值范圍是      (    )

A (1,   +∞)    B    C  
D

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知中心在原點(diǎn),頂點(diǎn)A1A2x軸上,離心率e=的雙曲線過點(diǎn)P(6,6).
(1)求雙曲線方程.
(2)動(dòng)直線l經(jīng)過△A1PA2的重心G,與雙曲線交于不同的兩點(diǎn)MN,問:是否存在直線l,使G平分線段MN,證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知,,則的軌跡方程是      

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)F1(-c,0)、F2(c,0)是橢圓+=1(a>b>0)的兩個(gè)焦點(diǎn),P是以F1F2為直徑的圓與橢圓的一個(gè)交點(diǎn),若∠PF1F2=5∠PF2F1,求橢圓的離心率

查看答案和解析>>

同步練習(xí)冊答案