已知與圓相切于點(diǎn),經(jīng)過點(diǎn)的割線交圓于點(diǎn),的平分線分別交于點(diǎn).

(1)證明:;
(2)若,求的值.

(1)證明如下 (2)

解析試題分析:(1)∵ PA是切線,AB是弦,∴∠BAP=∠C,
又∵∠APD=∠CPE,∴∠BAP+∠APD=∠C+∠CPE,∵∠ADE=∠BAP+∠APD,
∠AED=∠C+∠CPE,∴∠ADE=∠AED. 
(2)由(1)知∠BAP=∠C,又∵∠APC=∠BPA, ∴△APC∽△BPA, ∴,      
∵ AC="AP," ∴∠APC=∠C=∠BAP,由三角形內(nèi)角和定理可知,∠APC+∠C+∠CAP="180°,"
∵ BC是圓O的直徑,∴∠BAC="90°," ∴∠APC+∠C+∠BAP="180°-90°=90°,"
∴∠C=∠APC=∠BAP=×90°="30°." 在Rt△ABC中,=, ∴=.
考點(diǎn):幾何證明
點(diǎn)評(píng):關(guān)于幾何證明的題目,若出現(xiàn)圓及切線,一般要結(jié)合到弦切角定理。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知⊙O的半徑為1,MN是⊙O的直徑,過M點(diǎn)作⊙O的切線AM,C是AM的中點(diǎn),AN交⊙O于B點(diǎn),若四邊形BCON是平行四邊形.

(Ⅰ)求AM的長(zhǎng);
(Ⅱ)求sin∠ANC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,AB是圓O的直徑,C,D是圓O上兩點(diǎn),AC與BD相交于點(diǎn)E,GC,GD是圓O的切線,點(diǎn)F在DG的延長(zhǎng)線上,且。求證:
(Ⅰ)D、E、C、F四點(diǎn)共圓;       (Ⅱ)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

幾何證明選講如圖:已知圓上的弧=,過C點(diǎn)的圓的切線與BA的延長(zhǎng)線交于E點(diǎn)

證明:(Ⅰ)∠ACE=∠BCD.(Ⅱ)BC2=BE×CD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,CD為△ABC外接圓的切線,AB的延長(zhǎng)線交直線CD于點(diǎn)D, E,F(xiàn)分別為弦AB與弦AC上的點(diǎn),且BC·AE=DC·AF,B, E, F,C四點(diǎn)共圓。

證明:(Ⅰ)CA是△ABC外接圓的直徑;
(Ⅱ)若DB=BE=EA.求過B, E, F,C四點(diǎn)的圓的面積與△ABC外接圓面積的比值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,是以為直徑的上一點(diǎn),于點(diǎn),過點(diǎn)的切線,與的延長(zhǎng)線相交于點(diǎn)的中點(diǎn),連結(jié)并延長(zhǎng)與相交于點(diǎn),延長(zhǎng)的延長(zhǎng)線相交于點(diǎn).

(1)求證:;
(2)求證:的切線;
(3)若,且的半徑長(zhǎng)為,求的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖, ⊙O為的外接圓,直線為⊙O的切線,切點(diǎn)為,直線,交,交⊙O于,上一點(diǎn),且.

求證:(Ⅰ);
(Ⅱ)點(diǎn)、、共圓.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,AB為⊙O的直徑,過點(diǎn)B作⊙O的切線BC,OC交⊙O于點(diǎn)E,AE的延長(zhǎng)線交BC于點(diǎn)D。

(1)求證:CE2 = CD · CB
(2)若AB = BC = 2,求CECD的長(zhǎng)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,是圓的兩條平行弦,,、交圓于,過點(diǎn)的切線交的延長(zhǎng)線于,

(1)求的長(zhǎng);
(2)求證:

查看答案和解析>>

同步練習(xí)冊(cè)答案