(2013•鷹潭一模)在△ABC中,角A,B,C所對邊分別為a,b,c,且c=4
2
,B=45°則S=2,則b等于( 。
分析:由S=
1
2
acsinB
=2,得a=1,再直接利用余弦定理求得b.
解答:解:由S=
1
2
acsinB
=
1
2
a×4
2
sin45°
=2,得a=1
又由余弦定理得b2=a2+c2-2accosB=1+32-2×4
2
×1×
2
2
=25,所以b=5
故選D
點評:本題考查三角形面積公式,余弦定理的應(yīng)用.解三角形時要充分了解各個定理公式包含的邊角關(guān)系,準確熟練應(yīng)用.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2013•鷹潭一模)設(shè)l、m、n表示三條直線,α、β、r表示三個平面,則下面命題中不成立的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•鷹潭一模)A﹑B﹑C是直線l上的三點,向量
OA
OB
OC
滿足:
OA
-[y+2f'(1)]•
OB
+ln(x+1)•
OC
=
0
;
(Ⅰ)求函數(shù)y=f(x)的表達式;          
(Ⅱ)若x>0,證明f(x)>
2x
x+2

(Ⅲ)當
1
2
x2≤f(x2)+m2-2bm-3
時,x∈[-1,1]及b∈[-1,1]都恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•鷹潭一模)定義域為R的偶函數(shù)f(x)滿足對?x∈R,有f(x+2)=f(x)-f(1),且當x∈[2,3]時,f(x)=-2x2+12x-18,若函數(shù)y=f(x)-loga(|x|+1)在(0,+∞)上至多三個零點,則a的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•鷹潭一模)復數(shù)z=
2+i
1-i
-i(2-i)
在復平面對應(yīng)的點在( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•鷹潭一模)已知全集U=R,集合A={x|y=log(x2-x-6),x∈R},B={x|
5
x+1
<1,x∈R}
,則集合A∩?RB=( 。

查看答案和解析>>

同步練習冊答案